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This article studies the behavior of the economy and the efficacy of monetary
policy under zero nominal interest rates using a model with population growth
that nests, as a special case, the conventional specification in which there is a single
infinitely lived representative agent. The article shows that with a growing pop-
ulation, monetary policy has distributional consequences that give rise to a real
balance effect, thereby eliminating the liquidity trap. These same distributional
effects, however, can also work to make many agents much worse off under zero
nominal interest rates than they are when the nominal interest rate is positive.

1. OLD IDEAS, NEW MODELS

Inflation has come full circle. Low before 1960, it rose during the 1960s and
peaked during the 1970s. From this peak, it fell during the 1980s, finally stabiliz-
ing during the 1990s at levels very similar to those prevailing before 1960. This
same circular pattern appears in data from virtually all the major industrialized
countries—in North America, in Europe, and in Asia—as shown, for example, by
Mussa (2000, Table 1, p. 1103).

Monetary economists and central bankers have also come full circle. Concerned
mainly with halting and reversing inflation’s upward trend during the 1970s and
1980s, analysts and policymakers have more recently rediscovered some of the
special problems that can arise under conditions of price stability. These problems
received much attention long ago but were ignored for more than a generation.
Now they have taken center stage once again.

Chief among these problems are those associated with the liquidity trap, which
according to Hicks (1937) lies at the core of Keynes’ (1936) economics. Krugman
(1998) and Svensson (1999) reconsider the idea of the liquidity trap using state-of-
the-art monetary models in which optimizing agents have rational expectations.
In both Krugman’s cash-in-advance model and Svensson’s money-in-the-utility
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function model, households become willing to hoard any additional money that
the government chooses to supply after the nominal interest rate reaches its lower
bound of zero. The central bank then loses control of the price level and perhaps
other key variables as well.

Notably absent from these new models of the liquidity trap, however, is another
old idea: that of the real balance effect. First discussed by de Scitovszky (1941),
Haberler (1946), and Pigou (1943) and developed most extensively by Patinkin
(1965), the real balance effect describes a channel through which a change in real
balances, caused either by a change in the nominal money supply or a change in
the nominal price level, impacts on household wealth and thereby affects con-
sumption and output. The real balance effect allows the central bank to influence
the economy even after the nominal interest rate hits its lower bound. Yet this
effect appears nowhere in Krugman and Svensson’s analyses. Why?

It has been widely appreciated, since the publication of Barro’s (1974) famous
article on Ricardian equivalence, that government bonds will not be perceived
as a source of private-sector wealth if the households owning those bonds are
the same households that must pay all of the taxes that will eventually be used to
retire the government’s debt. Less widely appreciated, however, is a closely related
finding, presented most explicitly by Weil (1991) but also implicit in earlier work by
Sachs (1983) and Cohen (1985). These authors show that government-issued fiat
money will not be perceived as a source of private-sector wealth if the households
owning that money are the same households that, first, receive all of the transfers
or pay all of the taxes associated with future changes in the money supply and that,
second, incur all of the opportunity costs associated with carrying the money stock
between all future periods. In fact, Krugman and Svensson’s representative–agent
models describe environments in which money is not net wealth. In these models,
therefore, the real balance effect disappears.

This article extends Krugman’s cash-in-advance framework by introducing
growth in the number of infinitely lived households as modeled by Weil. The
article shows that with a growing population, households alive in the present pay
only a fraction of the taxes levied in the future when the government chooses
to contract the money supply. Money becomes net wealth and, consequently, an
operative real balance effect gives the central bank control over the price level
even when the nominal interest rate equals zero. Only in the special case without
population growth—the special case in which the more general model developed
here collapses to Krugman’s original specification—does the liquidity trap survive.

Introducing population growth in the manner suggested by Weil also serves
to resolve a second puzzle that emerges out of Krugman and Svensson’s earlier
analyses. By associating the case of zero nominal interest rates with the Keynesian
liquidity trap, Krugman and Svensson conjure up images of terrible economic
outcomes: the Great Depression in the United States or the ongoing lengthy
and severe recession in Japan. As emphasized by Cole and Kocherlakota (1998),
however, zero nominal interest rates in models such as Krugman and Svensson’s
are actually associated with highly desirable resource allocations. In fact, zero
nominal interest rates in these models are linked more closely to Friedman’s
(1969) rule for the “Optimum Quantity of Money” than to what Hicks (1937,
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p. 155) calls the “Economics of Depression.” But are zero nominal interest rates
always good for the economy?

Weiss (1980), Freeman (1985, 1989, 1993), and Smith (2002) all present ex-
amples of overlapping generations models in which the Friedman rule fails to
maximize private agents’ steady-state utility. Bhattacharya et al. (2004) unify and
explain these results by tracing them back to distributional effects that are absent
in representative-agent models like Krugman and Svensson’s. This article also
shows that distributional effects—the same distributional effects, as a matter of
fact, that give rise to the real balance effect—operate once population growth is
introduced into Krugman’s cash-in-advance model. Here, these distributional ef-
fects can make virtually all households much worse off under zero nominal interest
rates than they are when interest rates are positive.

On the other hand, Bhattacharya et al. also demonstrate that in overlapping
generations models, the Friedman rule’s optimality is typically restored when off-
setting fiscal transfers are used to neutralize the distributional effects that defla-
tionary policies would otherwise have.2 This result, too, carries over to the model
with growth in the number of infinitely lived household studied here. In the end,
therefore, this article joins with Bhattacharya et al. by suggesting that the prin-
cipal dangers posed by deflationary policies have little to do with zero nominal
interest rates per se and even less to do with the Keynesian liquidity trap. Rather,
both the problems and their ultimate solutions lie in the mechanics through which
deflationary policies are implemented.

2. AN EXTENDED CASH-IN-ADVANCE MODEL

2.1. Overview. Here, Weil’s (1991) continuous-time, money-in-the-utility
function model with a growing number of infinitely lived households is recast as a
discrete-time, cash-in-advance model. Weil’s original specification assigns to each
household a utility function that is strictly increasing in two arguments: consump-
tion and real money balances. Since households cannot be satiated by any finite
stock of real balances, equilibria in Weil’s original model exist only under strictly
positive nominal interest rates, ruling out an analysis of the case that Krugman
(1998) associates with the liquidity trap. Of course, one could also modify Weil’s
model in a manner consistent with Svensson (1999) by introducing a satiation
point beyond which the marginal utility of real balances equals zero. The cash-in-
advance framework used here, however, incorporates the satiation point for real
balances in a way that is linked more naturally to the volume of each household’s
nominal expenditures.

Whitesell (1988) presents a model that is quite similar to Weil’s and uses that
model to study the effects of money growth on the capital stock and welfare. In
fact, both Weil’s model and Whitesell’s can be viewed as extensions of Blanchard’s
(1985) model of finite horizons. In Blanchard’s model, each agent faces a constant
probability of death; meanwhile, newly born agents arrive at a rate that keeps the

2 As noted below, Abel (1987) and Gahvari (1988) present earlier examples of Bhattacharya et al.’s
general result.
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total population constant. Buiter (1988) generalizes Blanchard’s model so as to
break the tight link between birth and mortality rates. Buiter’s analysis reveals
that it is the arrival of newly born agents, rather than the finite horizons of exist-
ing agents, that is essential in overturning Barro’s (1974) Ricardian equivalence
result—a result that, as noted above, relates closely to the presence or absence
of monetary wealth effects. Thus, the model used here, like the models used by
Weil and Whitesell, retains the essential feature of population growth in an envi-
ronment where all agents are infinitely lived. And conveniently, this more general
model nests, as the special case in which the population growth rate equals zero,
the conventional specification that features a single infinitely lived representative
agent.

Weil’s model, in which goods are received by each household in the form of a
constant endowment, is also extended here by allowing each household to pro-
duce output with labor. Here, as in Wilson (1979), Cooley and Hansen (1989),
Cole and Kocherlakota (1998), and Ireland (2003), positive nominal interest rates
distort households’ labor supply decisions. Thus, the structure of production and
trade gives rise to a mechanism that might make the central bank want to follow
the Friedman (1969) rule, which provides for zero nominal interest rates. And, in-
deed, the Friedman rule is optimal in the special case where the population growth
rate equals zero. When the population grows at a positive rate, however, the taxes
that the government must levy to implement the Friedman rule generate distri-
butional effects that can make zero nominal interest rates quite costly for many
agents.

2.2. Demographic Structure. A new cohort of infinitely lived households is
born at the beginning of each period t = 0, 1, 2, . . . . Those households born in a
particular period t = s belong to cohort s. The arrival of new cohorts causes the
total number of households to grow at the constant rate n ≥ 0. Let Nt denote the
number of households alive during period t. Then given N0 > 0,

Nt+1 = (1 + n)Nt

for all t = 0, 1, 2, . . . .
Households of a given cohort are identical, so that it is possible to consider a

representative household for each cohort. The representative household of cohort
s has preferences described by the utility function

∞∑
t=s

β t−s ln
[
cs

t − (1/γ )
(
hs

t

)γ ]
(1)

where 1 > β > 0, γ > 1, c s
t denotes the household’s consumption, and hs

t denotes
the household’s hours worked during period t. This specification for utility implies
that the marginal rate of substitution between consumption and hours worked
depends only on hours worked, so that in particular there are no wealth effects
on labor supply. Here, this special assumption greatly simplifies the aggregation
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of quantities chosen by households of different cohorts having different levels of
accumulated financial wealth.3

Thus, during any given period, the economy consists of many infinitely lived
agents of varying ages. As suggested by Weil (1991) and Whitesell (1988), there-
fore, the population growth rate n serves as a measure of financial disconnected-
ness and heterogeneity in the economy as a whole. In the special case with n = 0,
however, the model collapses to the more familiar one in which there is a single
infinitely lived representative agent.

2.3. Timing of Events. The representative household of cohort s enters each
period t = s, s + 1, s + 2, . . . , with money Ms

t and bonds Bs
t . Only the initial

cohort is endowed with money at birth, and no cohort is endowed with bonds
at birth, so that M0

0 > 0 but Ms
s = 0 for all s = 1, 2, 3, . . . , and Bs

s = 0 for all
s = 0, 1, 2, . . . . As emphasized by Weil (1991) and Whitesell (1988), these initial
conditions formalize the idea that newly born households are not linked financially
to previously existing dynasties.

The representative household of each cohort s receives a lump-sum monetary
transfer T s

t from the central bank at the beginning of each period t = s, s + 1,
s + 2, . . . . Also at the beginning of each period, existing bonds mature, providing
the representative household of cohort s with Bs

t additional units of money. The
household uses some of its money to purchase Bs

t+1 new bonds at the price of
1/(1 + r t) units of money per bond, where rt denotes the net nominal interest rate
between t and t + 1; the household carries the rest of its money into the goods
market.

The description of goods production and trade builds on Lucas’ (1980) interpre-
tation of the cash-in-advance model. Each household consists of two members: a
shopper and a worker. The shopper from the representative household of cohort
s purchases c s

t units of output from workers from other households, subject to the
cash-in-advance constraint

Ms
t + Ts

t + Bs
t − Bs

t+1

/
(1 + rt ) ≥ Pt cs

t(2)

where Pt denotes the nominal price of goods during period t. Meanwhile, the
worker from the representative household of cohort s uses hs

t units of labor to
produce ys

t units of output according to the constant-returns-to-scale technology
that yields one unit of output for every unit of labor input,

ys
t = hs

t

The worker sells this output to shoppers from other households for Pths
t units of

money. The representative household’s two members then reunite to consume the

3 Although this specification for utility is also used by Greenwood et al. (1988), among others, it
has sometimes been criticized for being inconsistent with balanced growth in models with rising real
wages driven by exogenous technological progress. Along these lines, however, Greenwood et al.
(1995) demonstrate that a very similar utility function that does remain consistent with balanced
growth emerges from a model with home production when productivity rises at the same average rate
across the market and household sectors. For simplicity, however, the model used here abstracts from
technological progress all kinds.
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shopper’s purchases. The household carries Ms
t+1 units of money into period t +

1; its choices must satisfy the budget constraint

Ms
t + Ts

t + Bs
t + Pt hs

t ≥ Pt cs
t + Bs

t+1

/
(1 + rt ) + Ms

t+1(3)

In addition to the cash-in-advance and budget constraints (2) and (3), which
must hold for all t = s, s + 1, s + 2, . . . , the representative household’s choices
must satisfy a set of nonnegativity constraints

hs
t ≥ 0, Ms

t+1 ≥ 0, cs
t − (1/γ )

(
hs

t

)γ
> 0(4)

for all t = s, s + 1, s + 2, . . . . The first two constraints in (4) are standard; the third
must be imposed given the special form of the utility function (1).

The representative household of cohort s can borrow by choosing negative
values for Bs

t+1 but is not allowed to engage in Ponzi schemes through which it
borrows more than it can ever repay. To formalize the constraints that rule out
such Ponzi schemes, let Q0 = 1 and

Qt =
t−1∏
u=0

(
1

1 + ru

)

for all t = 1, 2, 3, . . . . Then for any T ≥ t ≥ 0, QT/Qt measures the present
discounted value at the beginning of period t of one unit of money received at the
beginning period T. The no-Ponzi-scheme constraints are

Ws
t+1 = Ms

t+1 + Bs
t+1 +

∞∑
u=t+1

(Qu/Qt+1)
(
Ts

u + Puhs
u

) ≥ 0(5)

for all t = s, s + 1, s + 2, . . . . Part 1 of the appendix shows that these no-Ponzi-
scheme constraints imply that the infinite-horizon budget constraint

Qt
(
Ms

t + Bs
t

) +
∞∑

u=t

Qu
(
Ts

u + Puhs
u

) ≥
∞∑

u=t

Qu

[
Pucs

u +
(

ru

1 + ru

)
Ms

u+1

]
(6)

applies to the household’s choices from period t forward. This infinite-horizon bud-
get constraint includes, as sources of funds, the household’s beginning-of-period
nominal balances Ms

t as well as the present discounted value of the monetary trans-
fers that the household receives from period t forward. It also includes, as uses
of funds, the present discounted value of the opportunity costs that the house-
hold incurs when it carries money instead of bonds between all future periods.
Ultimately, a comparison between the values of these three items will determine
whether or not the real balance effect is operative in general equilibrium.

2.4. Household Optimization. Taking the initial conditions Ms
s and Bs

s as
given, the representative household of cohort s chooses sequences {c s

t , hs
t , Ms

t+1,
Bs

t+1}∞
t=s to maximize the utility function (1) subject to the constraints (2)–(5),
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each of which must hold for all t = s, s + 1, s + 2, . . . . Equivalently, (3) and (5)
can be replaced by (6) in this statement of the household’s problem.

Define the real variables

ms
t = Ms

t

/
Pt , bs

t = Bs
t

/
Pt , τ s

t = Ts
t

/
Pt

and let π t denote the net inflation rate between t − 1 and t

1 + πt = Pt/Pt−1

In addition, let

1 + xt = (1 + rt )/(1 + πt+1)(7)

define the net real interest rate xt during period t, and let

as
t = ms

t + bs
t(8)

summarize the representative household’s real asset position at the beginning
of period t. Part A.2 of the appendix demonstrates that in terms of these newly
defined variables, the conditions

hs
t =

(
1

1 + rt

)1/(γ−1)

(9)

(1 + πt+1)ms
t+1 ≥ hs

t , rt ≥ 0, rt
[
(1 + πt+1)ms

t+1 − hs
t

] = 0(10)

cs
t = 1

γ

(
1

1 + rt

)γ /(γ−1)

+ (1 − β)

{
as

t +
∞∑

u=t

[
u−1∏
v=t

(
1

1 + xv

)] [
τ s

u +
(

γ − 1
γ

) (
1

1 + ru

)γ /(γ−1)
]}

(11)

and

as
t+1 = (1 + xt )

[
as

t + τ s
t +

(
1

1 + rt

)γ /(γ−1)

− cs
t

]
(12)

for all t = s, s + 1, s + 2, . . . , and

lim
t→∞

[
t∏

v=s

(
1

1 + xv

)]
as

t+1 = 0(13)

are both necessary and sufficient for a solution to the household’s problem.
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Equation (9) confirms that positive nominal interest rates distort the house-
hold’s labor supply decisions, as discussed by Wilson (1979), Cooley and Hansen
(1989), Cole and Kocherlakota (1998), and Ireland (2003). Equation (10) restates
the cash-in-advance constraint. It reveals that when the nominal interest rate hits
its lower bound of zero, the cash-in-advance constraint no longer binds; this is the
case that Krugman (1998) associates with the liquidity trap.

Equation (11) defines the household’s consumption function, which according
to the permanent income hypothesis links consumption to total wealth. Embedded
into the right-hand side of (11) are the same three components of monetary wealth
identified in (6): the household’s current money balances, the present discounted
value of the future monetary transfers, and the present discounted value of the
opportunity costs associated with carrying money instead of bonds between future
periods. Once again, a comparison between the values of these three items will
determine whether or not the real balance effect appears in equilibrium.

Equation (12) governs the evolution of the household’s financial wealth. It
shows that the household accumulates wealth as it earns interest on its existing
assets and as it receives monetary transfers from the government; the household
also accumulates wealth by working more and consuming less. Finally, (13) is the
household’s transversality condition. If the limit on the left-hand side of (13) was
negative, then the household would be violating the no-Ponzi-scheme constraints
in (5); if, on the other hand, the limit was positive, then the household could
achieve a preferred consumption profile, without violating any of its constraints,
by drawing down its stock of financial assets.

2.5. Aggregation. Define aggregate per household financial wealth during pe-
riod t as

at = N0 a0
t + ∑t

s=1(Ns − Ns−1)as
t

Nt

and define aggregate per household real money balances mt, real bond holdings
bt, hours worked ht, and consumption ct similarly. Also, and importantly, let

τt = N0τ
0
t + ∑t

s=1(Ns − Ns−1)τ s
t

Nt

denote aggregate per household real money transfers made to all agents alive
during period t and let

τu,t = N0τ
0
u + ∑t

s=1(Ns − Ns−1)τ s
u

Nt

denote aggregate per household real monetary transfers made during period
u ≥ t to those households that were alive during period t. Then, of course, τ t,t =
τ t for all t = 0, 1, 2, . . . . But for u = t + 1, t + 2, t + 3, . . . , τ u,t will generally differ
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from τ u, since some of the monetary transfers made during period u may go to
households born during periods t + 1 through u.

In terms of these aggregates, (8)–(12) become

at = mt + bt(14)

ht =
(

1
1 + rt

)1/(γ−1)

(15)

(1 + n)(1 + πt+1)mt+1 ≥ ht , rt ≥ 0, rt [(1 + n)(1 + πt+1)mt+1 − ht ] = 0(16)

ct = 1
γ

(
1

1 + rt

)γ /(γ−1)

+ (1 − β)

{
at +

∞∑
u=t

[
u−1∏
v=t

(
1

1 + xv

)] [
τu,t +

(
γ − 1

γ

) (
1

1 + ru

)γ /(γ−1)
]}

(17)

and

at+1 =
(

1 + xt

1 + n

) [
at + τt +

(
1

1 + rt

)γ /(γ−1)

− ct

]
(18)

for all t = 0, 1, 2, . . . . Although (14)–(16) are straightforward analogs to (8)–(10), a
comparison of (17) to (11) reveals that aggregate per household consumption dur-
ing period t depends on the real value of future monetary transfers, but only to the
extent that those transfers will be made to households that are alive during period
t. Similarly, a comparison of (18) to (12) suggests that aggregate per household
financial wealth tends to grow at a slower rate than each individual household’s
financial wealth, since newly born households start their lives without money and
bonds.

2.6. Equilibrium Conditions. Equations (7) and (14)–(18) form a system of
six equations in the 10 aggregate variables xt, r t, π t+1, at, mt, bt, ht, ct, τ t , and τ u,t.
This system can be closed by imposing the market-clearing conditions for goods
and labor,

ht = ct(19)

for all t = 0, 1, 2, . . . , and by making assumptions about the government’s supply
of money and bonds.
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Accordingly, suppose first that the government issues no bonds. Then, in equi-
librium,

bt = 0(20)

must also hold for all t = 0, 1, 2, . . . . Note that (20) only requires that aggregate
per household bonds equal zero; it does not rule out the possibility that for any
individual household, b s

t will be nonzero as households of different cohorts borrow
and lend among themselves by trading bonds.

Suppose next that the government acts to expand the total nominal money
supply at the constant rate σ by making equal lump-sum transfers to all households
alive during each period. Then, in equilibrium,

τt = σmt(21)

and

τu,t = σmu(22)

will hold for all t = 0, 1, 2, . . . , and u = t , t + 1, t + 2, . . . .
Under government policies described by (20)–(22), (14) immediately implies

that

at = mt(23)

whereas (7) and (15)–(18) become

1 + xt = (1 + rt )/(1 + πt+1)(24)

ct =
(

1
1 + rt

)1/(γ−1)

(25)

(1 + n)(1 + πt+1)mt+1 ≥ ct , rt ≥ 0, rt [(1 + n)(1 + πt+1)mt+1 − ct ] = 0(26)

ct = 1
γ

(
1

1 + rt

)γ /(γ−1)

+ (1 − β)

{
mt +

∞∑
u=t

[
u−1∏
v=t

(
1

1 + xv

)] [
σmu +

(
γ − 1

γ

) (
1

1 + ru

)γ /(γ−1)
]}

(27)

and

mt+1 =
(

1 + xt

1 + n

) [
(1 + σ )mt +

(
1

1 + rt

)γ /(γ−1)

− ct

]
(28)
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for all t = 0, 1, 2, . . . . Given the government’s choice of the money growth rate
σ , (24)–(28) determine the equilibrium behavior of the five aggregate variables
xt, r t, π t+1, mt, and ct; paths for the remaining five aggregates at, bt, ht, τ t , and τ u,t

then follow immediately from (19)–(23).

2.7. Steady-State Equilibria. Equations (24)–(28) imply that under a policy of
constant money growth σ via equal lump-sum transfers, a steady-state equilibrium
exists in which aggregate variables are constant over time, with xt = x, r t = r , π t+1 =
π , mt = m, and ct = c for all t = 0, 1, 2, . . . .4 Part A.3 of the appendix demonstrates
that, more specifically, (24)–(28) require the five steady-state values x, r , π , m, and
c to satisfy

1 + x = (1 + r)/(1 + π)(29)

1 + π = (1 + σ )/(1 + n)(30)

c =
(

1
1 + r

)1/(γ−1)

(31)

(1 + σ )m ≥ c, r ≥ 0, r [(1 + σ )m − c] = 0(32)

and

c = 1
γ

(
1

1 + r

)γ /(γ−1)

+ (1 − β)

{[
1 +

(
1 + x

x

)
σ

]
m +

(
γ − 1

γ

) (
1 + x

x

) (
1

1 + r

)γ /(γ−1)
}

(33)

Equation (29) defines the steady-state real interest rate as the difference be-
tween the nominal interest rate and the inflation rate; similarly, (30) determines
the steady-state inflation rate as the difference between the money growth rate
and the population growth rate. Equation (31) confirms that across steady-state
equilibria, higher nominal interest rates reduce consumption and output as well
as employment. Equation (32), derived from the cash-in-advance constraint, de-
scribes the aggregate demand for money, and (33) is the aggregate consumption
function with the steady-state conditions imposed.

4 In addition, (24)–(28) characterize the model’s dynamics away from the steady state. As noted
below, however, this model has no predetermined state variables: Hence, if a steady state exists, a
perfect foresight equilibrium also exists in which the economy begins and remains forever in that steady
state. A more thorough analysis of the model’s dynamics would therefore serve only to confirm or rule
out the existence of multiple perfect foresight equilibria of the kind studied in a more conventional
cash-in-advance specification by Woodford (1994).
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3. THE LIQUIDITY TRAP AND THE REAL BALANCE EFFECT

What do the steady-state conditions (29)–(33) imply about the behavior of the
economy and the efficacy of monetary policy under zero nominal interest rates?
To answer this question, it is helpful to consider two cases. The first case sets
n = 0, so that there is no population growth. This first case is therefore the special
case in which the more general model developed here reduces to the familiar
specification, used by Krugman (1998) and many others, in which there is a single
representative agent. And, indeed, Krugman’s liquidity trap appears in this special
case: The central bank loses control over the price level when the nominal interest
rate hits its lower bound of zero. In the second case with n > 0, however, a real
balance effect emerges, enabling the central bank to control the price level even
under a zero nominal interest rate.

3.1. The Liquidity Trap. When r = 0 and n = 0, so that both the nominal
interest rate and the population growth rate equal zero, (29)–(31) and (33) imply
that

1 + σ = 1 + π = β(34)

1 + x = 1/β(35)

and

c = 1(36)

In this steady state, the central bank follows the Friedman (1969) rule, contracting
the money stock at the rate of time preference and generating a rate of deflation
that is consistent with the zero nominal interest rate. As in Sidrauski’s (1967)
famous model, the steady-state real interest rate is pinned down by the rate of
time preference, and as discussed below, consumption, output, and employment
are at their Pareto optimal levels.

But while (34)–(36) provide unique solutions for π , x, and c, the cash-in-advance
constraint (32) requires only that

m ≥ 1/β(37)

Since r = 0, the opportunity cost of holding money instead of bonds is zero.
Households are therefore willing to hoard arbitrarily large stocks of real money
balances. A continuum of steady-state equilibria exists, each corresponding to a
value of m that satisfies (37).

Thus, in this case without population growth, the model exhibits what McCallum
(1986, p. 137) refers to as solution “multiplicity,” as opposed to the less severe prob-
lem of price-level “indeterminacy.” Multiple values of the real balance variable
m satisfy (37). Hence, even if the central bank chooses an initial value M0

0 for the
level of the nominal money supply in addition to the constant money growth rate
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σ , there are still many distinct time paths for the price level that are consistent
with all of the steady-state conditions.

One can, therefore, follow Krugman (1998) by associating this case with the
Keynesian liquidity trap. Here, variations in the government’s choice of M0

0, hold-
ing the money growth rate σ fixed, need not be associated with movements in the
price level. With nominal interest rates frozen at their lower bound of zero, the
central bank loses the ability to influence the behavior of prices.

3.2. The Real Balance Effect. When r = 0 but n > 0, the nominal interest rate
continues to equal zero but the population grows at a positive rate. Equations
(29)–(31) and (33) imply that

1 + π = (1 + σ )/(1 + n)(38)

1 + x = (1 + n)/(1 + σ )(39)

c = 1(40)

and

m = (γ − 1)[β(1 + n) − (1 + σ )]
γ (1 − β)(1 + σ )n

(41)

while (32) requires that the money growth rate satisfy

β(1 + n) − n(1 − β)
(

γ

γ − 1

)
≥ 1 + σ(42)

There is, in addition to (42), a second condition that places restrictions on the
money growth rate when n > 0: the condition c s

t − (1/γ )(hs
t )γ > 0 from the set of

nonnegativity constraints in (4). Part A.4 of the appendix shows that in a steady
state, this additional condition holds if and only if

1 + σ > β(43)

Intuitively, (42) requires the money growth rate to be low enough to be consistent
with a zero nominal interest rate, whereas (43) guarantees that the lump-sum taxes
required to implement a policy of zero nominal interest rates do not become so
large that newly born households cannot afford to pay them and still consume. So
long as β is sufficiently close to 1 or, more precisely, so long as β > γ /(2γ − 1),
the upper bound in (42) exceeds the lower bound in (43), and there is a range of
values for σ that satisfy both constraints.5

5 When, for instance, γ = 1.6 as in the numerical examples presented below, a range of values for
σ satisfying both (42) and (43) exists for all values of β exceeding 0.7273.
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Equation (39) reveals that in this case with population growth, the steady-state
real interest rate is no longer tied to the rate of time preference; instead, a Tobin
(1965) effect arises through which the real interest rate falls when the money
growth rate rises. This Tobin effect also appears under positive nominal interest
rates, as discussed by Weil (1991) and, more extensively, Whitesell (1988). Here,
in fact, the presence of the Tobin effect explains why equilibria with zero nominal
interest rates exist over the entire range of money growth ratesσ satisfying (42) and
(43): Across these equilibria, a decrease in inflation brought about by a decrease
in the money growth rate is accompanied by an offsetting rise in the real interest
rate, leaving the nominal interest rate constant at zero. Note from (41), however,
that each of these equilibria with zero nominal interest rates features a different
level of aggregate per household real money balances; moreover, as shown below,
patterns of consumption and asset ownership for each individual household differ
greatly across these zero interest rate equilibria.

For any given rate of money growth satisfying (42) and (43), however, (41)
serves to uniquely determine the level of steady-state real balances. Thus, by
selecting the initial value M0

0 for the level of the nominal money supply as well
as the money growth rate σ , the central bank can, through its choice of policy,
determine a unique path for the nominal price level. This result—that when n >

0, m is uniquely determined, even when r = 0—cannot be found in Weil (1991) or
Whitesell (1988), since their money-in-the-utility function specifications require
the nominal interest rate to be positive. But why does Krugman’s (1998) liquidity
trap vanish when n becomes positive?

Sachs (1983), Cohen (1985), and Weil (1991) identify the three components of
the private sector’s monetary wealth that appear explicitly in the infinite-horizon
budget constraint (6) and implicitly in the consumption functions (11), (17), (27),
and (33). First, there is the value of the current period’s money supply. Second,
there is the present discounted value of all future transfers or taxes that households
alive today will receive or pay as the government expands or contracts the money
supply over time. Third, there is the present discounted value of the opportunity
costs that households alive today will incur as they carry money instead of bonds
between all future periods. When the nominal interest rate equals zero, only the
first two of these three components remain, so that aggregate per household real
monetary wealth during period t is measured by

�t = mt +
∞∑

u=t

[
u−1∏
v=t

(
1

1 + xv

)]
τu,t

In a steady state with constant money growth via equal lump-sum transfers, (22)
implies that �t is constant and equal to

� =
[

1 +
(

1 + x
x

)
σ

]
m(44)

In general, this measure of monetary wealth enters into the aggregate consump-
tion function (33). In the special case with n = 0 and r = 0, however, (34), (35),
and (44) imply that
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� =
[

1 +
(

1
1 − β

)
(β − 1)

]
m = 0(45)

Without population growth, the households owning the current period’s money
stock are exactly the same households that pay all of the taxes required to imple-
ment a policy of zero nominal interest rates. Thus, as noted by Weil, an argument
analogous to the one underlying Barro’s (1974) Ricardian equivalence theorem
implies that government-issued money, like government-issued bonds, will not be
a source of private net wealth.

When n > 0, on the other hand, (39) and (44) imply that

� = n
(

1 + σ

n − σ

)
m > 0

In this case, households alive during any period t pay only a fraction of the future
taxes required to keep the nominal interest rate at zero; households born in later
periods share the total tax burden. Hence, money is a component of private net
wealth. Since real balances enter nontrivially into the aggregate consumption
function (33), m is uniquely determined, even when the cash-in-advance constraint
(32) does not bind. The central bank retains control over the price level, even when
the nominal interest rate is zero.

de Scitovszky (1941), Haberler (1946), Pigou (1943), and Patinkin (1965) de-
scribe the real balance effect. According to these authors, real money balances
form a component of private sector wealth and therefore enter into the aggregate
consumption function. As a result, a change in the level of real balances, brought
about either by a change in the nominal money supply or a change in the nominal
price level, gives rise to changes in consumption and output. Thus, the real balance
effect allows the central bank to influence the economy even after the nominal
interest rate reaches its lower bound. Here, the real balance effect operates in
exactly this way, so long as the population grows at a positive rate. Only in the
special case without population growth, where money is not net wealth, does the
liquidity trap survive.

4. THE WELFARE COSTS OF DEFLATION

The results from above resolve one of the puzzles left over from Krugman (1998)
and Svensson’s (1999) analyses of the liquidity trap. These results show that a real
balance effect of the kind described by de Scitovszky (1941), Haberler (1946),
Pigou (1943), and Patinkin (1965) fails to appear in Krugman and Svensson’s
models because these models, which feature a single infinitely lived representa-
tive agent, depict economic environments in which government-issued money is
not a component of aggregate private sector wealth. When population growth is
introduced into one of these models, in the manner suggested by Weil (1991) and
Whitesell (1988), money becomes net wealth. The real balance effect reappears,
and the central bank regains control over the price level even when the nomi-
nal interest rate equals zero. The real balance effect reappears because monetary
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policies have distributional consequences: The households owning money today
pay only some of the taxes or receive some of the transfers associated with future
changes in the money supply.

The same distributional consequences help resolve a second puzzle emerging
from Krugman and Svensson’s analyses. By associating the case of zero nominal
interest rates with the Keynesian liquidity trap, Krugman and Svensson conjure up
images of economic depression. But, in fact, Wilson (1979), Cole and Kocherlakota
(1998), and Ireland (2003) derive results associating zero nominal interest rates
with Pareto-optimal resource allocations in representative–agent models such as
Krugman and Svensson’s. These optimality results can be rederived for the cash-
in-advance model developed here in the special case without population growth.

When n = 0 in the model from above, there is a single representative household
that lives from the beginning of period t = 0 forward. In equilibrium, this house-
hold’s consumption and hours worked coincide with the per household aggregates,
so that by (19) and (25),

h0
t = c0

t =
(

1
1 + rt

)1/(γ−1)

(46)

for all t = 0, 1, 2, . . . . Now consider a social planner, who chooses sequences {c0
t ,

h0
t }∞

t=0 to maximize the representative household’s utility

∞∑
t=0

β t ln
[
c0

t − (1/γ )
(
h0

t

)γ ]

subject only to the aggregate resource constraints

h0
t ≥ c0

t

for all t = 0, 1, 2, . . . . The solution to this planning problem, which describes the
unique symmetric Pareto-optimal allocation, sets

h0
t = c0

t = 1(47)

for all t = 0, 1, 2, . . . .
Comparing (46) and (47) reveals that equilibrium and optimal allocations coin-

cide when monetary policy provides for zero nominal interest rates. Since positive
nominal interest rates serve only to distort the representative household’s labor
supply decisions, zero nominal interest rates are good, not bad. They are more
appropriately associated with Friedman’s (1969) rule for the optimum quantity of
money that with Keynes’ (1936) theories of economic depression.

When n = 0, the representative household can always use its initial stock of real
balances to finance the lump-sum taxes required to contract the money supply; this
result follows from (45), which shows that in the case without population growth,
the value of the stock of real balances exactly offsets the present discounted value
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of the future taxes needed to implement a policy of zero nominal interest rates.
When n > 0, however, some of the taxes associated with monetary contraction
must be paid by households from cohorts s > 0 that are born without an initial
endowment of financial assets. And as the money growth rate approaches its lower
bound from (43), the tax burden on these households becomes heavier and heavier
relative to their ability to pay.

Thus, when the population grows, monetary policies have distributional con-
sequences that potentially make deflation quite costly for many agents. On the
other hand, even when n> 0, (19) and (25) associate lower nominal interest rates—
brought about through deflation—with higher levels of aggregate consumption,
output, and employment. The question becomes: How large are the costs, com-
pared to the benefits?

To answer this question, consider adopting as a welfare criterion for monetary
policy the lifetime utility achieved by a representative household that is born
into the model’s steady state. Woodford (1990) vigorously defends this measure
of welfare in models, such as the one used here, in which heterogenous agents
are distinguished by their dates of birth. And, in this particular model where
there are no predetermined state variables and hence in which there need not
be any transitional dynamics en route to the steady state, this welfare criterion
corresponds to the lifetime utility enjoyed by all households from all cohorts
s > 0, that is, by all households except those from the initial cohort, which after
all constitute a smaller and smaller fraction of the economy’s total population as
newly born households continue to arrive over the infinite horizon. Weiss (1980),
Freeman (1985, 1989, 1993), and Smith (2002) all present examples of overlapping
generations models in which the Friedman rule fails to maximize steady-state
utility; Bhattacharya et al. (2004) unify these examples by arguing that in each
case, monetary contraction has distributional effects of exactly the same kind that
occur in the model with infinitely lived agents studied here. Similarly, Whitesell
(1988) finds that steady-state utility is maximized by a positive money growth rate
and, indeed, Whitesell’s result carries over to the variant of his model developed
here.

As an example, suppose that β = 0.99, so that each period in the model can
be identified as one quarter year. Let γ = 1.6, the value used by Greenwood
et al. (1988) to match estimates of the labor supply elasticity 1/(γ − 1), and
let n = 0.0025, a small but positive value corresponding to an annualized rate of
population growth of about 1%. With these parameter settings, numerical analysis
reveals that steady-state utility is maximized when σ = 0.0046, so that the nominal
money stock grows at the annualized rate of 1.87%. This optimal policy gives rise
to an annualized inflation rate of 0.85% and an annualized nominal interest rate
of 5.02%. The annualized real interest rate of 4.13% exceeds the annualized rate
of time preference of 4.10%, so that as in the additional examples discussed below,
each household chooses a growing path for consumption. Aggregate consumption
in this preferred steady state is constant at 0.9798, more than 2% below the level
c = 1 that, according to (40), is achieved in steady states with zero nominal interest
rates. But despite the reduction in aggregate consumption, the representative
household prefers this steady state with positive money growth.
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More generally, the welfare effects of different money growth rates can be sum-
marized as follows. Let U0 denote the lifetime utility achieved by a representative
household that is born into the model’s steady state when the money supply is
held constant or, equivalently, when the money growth rate equals zero. Next, let
{c s

t (σ )}∞
t=s and {hs

t (σ )}∞
t=s denote the sequences of consumption and hours

worked chosen by this representative household in the alternative steady state in
which the money growth rate equals σ . Finally, let ω(σ ) be defined implicitly by

U0 =
∞∑

t=s

β t−s ln
{
[1 + ω(σ )/100]cs

t (σ ) − (1/γ )
[
hs

t (σ )
]γ }

Then ω(σ ) measures the permanent percentage increase in consumption that
makes the representative household as well off under the money growth rate
σ as it is under the benchmark of zero money growth; Cooley and Hansen (1989)
and Lucas (2000) use similar measures of the welfare costs of inflation.

Table 1 summarizes the effects of changes in the steady-state money growth rate
σ and reports the value of ω(σ ) for various choices of σ when, as in the example
from above, β = 0.99, γ = 1.6, and n = 0.0025. The function ω takes on negative
values for annualized money growth rates as high as 3.65%, indicating that the
representative household prefers small but positive values of σ to the benchmark
setting of σ = 0. The function ω reaches its minimum at the optimal setting of
σ = 0.0046.

As σ rises above 0.01, the negative effects of money growth on aggregate output
begin to overwhelm the positive distributional effects, so that ω turns positive.
The largest values of ω, however, occur for negative values of σ that make the
nominal interest rate equal to zero. A representative household born into the
steady state with σ = −0.008 needs a permanent 5.25% increase in consumption
to be as well off as under a constant money supply. And as the money growth
rate approaches −0.01, the lower bound from (43), the tax burden associated with
the zero nominal interest rate becomes so heavy that the household needs almost
60% more consumption to be as well off as under a constant money supply.

To provide deeper insights into the nature of the distributional effects that
make zero nominal interest rates so costly in this model, as well as to confirm
Bhattacharya et al.’s intuition that these distributional effects underlie newly born
agents preference for positive rates of inflation, Figure 1 displays individual house-
holds’ patterns of asset accumulation and consumption in four more examples.6

Once again, these examples set β = 0.99, γ = 1.6, and n = 0.0025 while allowing
the money growth rate σ to vary. In the first example, illustrated in the figure’s
two top panels, σ = −0.0099, very close to the lower bound for money growth
allowed by (43). In the second example, σ = −0.0076, equal to the upper bound
in (42). Thus, each of the first two examples features a zero nominal interest rate

6 Note that according to (9), all households from all cohorts work the same number of hours in
equilibrium. This result follows from the specification (1) for utility, which as explained earlier implies
that there are no wealth effects on labor supply, greatly facilitating the aggregation of quantities chosen
by otherwise heterogenous households.
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TABLE 1
THE EFFECTS OF STEADY-STATE MONEY GROWTH

σ π r x c m ω(σ )

−0.010 −0.0125 0.0000 0.0126 1.0000 37.5000 58.7945
−0.009 −0.0115 0.0000 0.0116 1.0000 22.3259 23.8144
−0.008 −0.0105 0.0000 0.0106 1.0000 7.1825 5.2543
−0.007 −0.0095 0.0006 0.0102 0.9990 1.0060 0.0096
−0.006 −0.0085 0.0016 0.0102 0.9973 1.0034 0.0077
−0.005 −0.0075 0.0026 0.0102 0.9957 1.0007 0.0060
−0.004 −0.0065 0.0036 0.0102 0.9940 0.9980 0.0045
−0.003 −0.0055 0.0046 0.0102 0.9923 0.9953 0.0031
−0.002 −0.0045 0.0056 0.0102 0.9907 0.9927 0.0019
−0.001 −0.0035 0.0066 0.0102 0.9890 0.9900 0.0009

0.000 −0.0025 0.0076 0.0102 0.9874 0.9874 0.0000

0.001 −0.0015 0.0087 0.0102 0.9857 0.9848 −0.0007
0.002 −0.0005 0.0097 0.0102 0.9841 0.9821 −0.0012
0.003 0.0005 0.0107 0.0102 0.9825 0.9795 −0.0016
0.004 0.0015 0.0117 0.0102 0.9808 0.9769 −0.0018
0.005 0.0025 0.0127 0.0102 0.9792 0.9743 −0.0018
0.006 0.0035 0.0137 0.0102 0.9776 0.9718 −0.0017
0.007 0.0045 0.0147 0.0102 0.9760 0.9692 −0.0013
0.008 0.0055 0.0157 0.0102 0.9744 0.9666 −0.0009
0.009 0.0065 0.0167 0.0102 0.9727 0.9641 −0.0002
0.010 0.0075 0.0177 0.0102 0.9711 0.9615 0.0006

0.020 0.0175 0.0278 0.0102 0.9553 0.9366 0.0176
0.030 0.0274 0.0379 0.0102 0.9399 0.9125 0.0506
0.040 0.0374 0.0479 0.0102 0.9249 0.8893 0.0994
0.050 0.0474 0.0580 0.0102 0.9103 0.8669 0.1635

0.100 0.0973 0.1084 0.0102 0.8424 0.7658 0.7031
0.150 0.1471 0.1588 0.0101 0.7822 0.6802 1.5812
0.200 0.1970 0.2092 0.0101 0.7287 0.6072 2.7662

NOTES: All examples set γ = 1.6, β = 0.99, and n = 0.0025. Figures listed for σ = −0.010 are the limits
as σ approaches −0.010 from above. σ = money growth rate, π = inflation rate, r= nominal interest
rate, x = real interest rate, c = consumption, m = real money balances, ω(σ ) = permanent percentage
increase in consumption required to make the representative household as well off as under zero
money growth.

but, as can be seen from the graphs themselves, very different patterns for individ-
ual asset holdings and consumptions. The remaining two examples increase the
rate of money growth still further, to 0.01 and then to 0.10; both of these cases
feature positive nominal interest rates. The dotted line in each panel traces out
quantities for the representative household from the initial cohort s = 0, whereas
the solid line traces out paths for households from all other cohorts s > 0 that, by
assumption, are born without financial assets.

The same costs and benefits of deflationary policies discussed above manifest
themselves clearly in Figure 1. As the money growth rate rises, the distortionary
effects of positive nominal interest rates reduce aggregate consumption. At the
same time, however, an increase in the rate of money growth reallocates wealth
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NOTES: Dotted line traces out values for a representative household from the initial cohort. Solid
line traces out values for representative households from each subsequent cohort. All examples set
β = 0.99, y = 1.6, and n = 0.0025.

FIGURE 1

INDIVIDUAL HOUSEHOLDS’ ASSETS AND CONSUMPTION IN STEADY STATES WITH CONSTANT MONEY GROWTH VIA

EQUAL LUMP-SUM TRANSFERS

away from households from the initial cohort s = 0 to households from subsequent
cohorts s > 0.

Thus, in one way, the introduction of the real balance effect into an other-
wise conventional cash-in-advance model works exactly as promised by Pigou,
Patinkin, and others: It eliminates the liquidity trap, giving the central bank con-
trol over the price level even when the nominal interest rate hits its lower bound
of zero. Yet here, the same distributional effects that allow the real balance effect
to operate also make zero nominal interest rates quite costly for some agents.
Paradoxically, a zero nominal interest rate is something to be achieved in the
conventional model, where the liquidity trap survives. With the introduction of
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the real balance effect, a zero nominal interest rate becomes something to be
avoided.

5. REHABILITATING THE FRIEDMAN RULE

Bhattacharya et al. (2004) also highlight the key role played by distributional
effects in more conventional overlapping generations models by constructing
more elaborate policy regimes that provide additional fiscal transfers to individual
agents who might otherwise be harmed by monetary contractions. Bhattacharya
et al. show, in particular, that once the distributional effects of deflation are neu-
tralized by the appropriate set of fiscal transfers, the Friedman rule once again
becomes part of an optimal policy mix. These results generalize earlier examples
presented by Abel (1987) and Gahvari (1988), in which the Friedman rule be-
comes optimal in an overlapping generations context, but only when coupled with
a complementary fiscal policy that offsets the distributional consequences.

Here, again, the same results apply. Once the distributional effects of monetary
contraction are neutralized by additional fiscal transfers, the general model with
population growth behaves exactly like the special case with n = 0: The real
balance effect disappears, the liquidity trap reemerges, and the Friedman rule
helps support Pareto-optimal resource allocations once again.

To fill in the details, suppose as above that the government issues no bonds and
acts to increase the total nominal money supply at the constant rate σ , so that
(19)–(21) continue to depict the aggregate market-clearing conditions for goods,
labor, bonds, and money. Suppose now, however, that in addition to making a
common lump-sum transfer of real value τ̄ to each household alive during each
period t = 0, 1, 2, . . . , the government also makes a special lump-sum of real value
m̄ to each newly born household at the beginning of each period t = 1, 2, 3, . . . , in
an attempt to put those households on a more equal footing with older households
that have already accumulated stocks of financial assets.

Under monetary–fiscal policy combinations of this type, the definitions of τ t

and τ u,t imply that

τt = τt,t = τ̄ +
(

n
1 + n

)
m̄(48)

for all t = 0, 1, 2, . . . , whereas

τu,t = τ̄

for all t = 0, 1, 2, . . . , and u = t + 1, t + 2, t + 3, . . . , since only the newborns
receive the additional transfer m̄. The government, of course, cannot choose the
three settings for σ, τ̄ , and m̄ independently: (21) and (48) imply that these values
must satisfy

τ̄ +
(

n
1 + n

)
m̄ = σm

in any steady-state equilibrium in which aggregate per household real balances
mt are constant and equal to m.
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In such a steady state, mt = m measures aggregate per household real bal-
ances held at the beginning of each period t = 0, 1, 2, . . . , before the government
makes any transfers to households alive during that period. And, by assumption,
newly born households start their lives without money. Taken together, these ob-
servations imply that at the beginning of each period, households born during
previous periods hold, on average, money balances of real value (1 + n)m. Hence,
the government can put newly born households on exactly the same footing as
older households by setting m̄ = (1 + n)m; it can then ensure that the total money
supply grows at the constant σ by setting τ̄ = (σ − n)m. Under this monetary–
fiscal policy regime, therefore, the government taxes older households in order
to provide transfers to newly born households; these transfers help neutralize the
distributional effects that simpler policies of money growth or contraction would
otherwise have.

Under this monetary–fiscal policy regime, (7) and (14)–(18) once again imply
that xt = x, r t = r , π t+1 = π , mt = m, and ct = c for all t = 0, 1, 2, . . . , in any
steady-state equilibrium. Now, however, these steady-state values must satisfy

1 + x = (1 + r)/(1 + π)(49)

1 + π = (1 + σ )/(1 + n)(50)

c =
(

1
1 + r

)1/(γ−1)

(51)

(1 + σ )m ≥ c, r ≥ 0, r [(1 + σ )m − c] = 0(52)

and

c = 1
γ

(
1

1 + r

)γ /(γ−1)

+ (1 − β)

{[
1 − n

x
+

(
1 + x

x

)
σ

]
m +

(
γ − 1

γ

) (
1 + x

x

) (
1

1 + r

)γ /(γ−1)
}

(53)

Equations (49)–(52), describing steady-state equilibria under this modified
monetary–fiscal policy regime, coincide exactly with (29)–(32), describing steady
states under policies of constant money growth without the additional fiscal trans-
fers. The consumption function (53) for the case with fiscal transfers differs from
(33) for the case without, however, suggesting that there may be important differ-
ences in consumption patterns across these two types of policy regimes.

Suppose, finally, that the government sets σ = β (1 + n) − 1: This choice adjusts
the money growth rate associated with the Friedman rule in (34) to account for the
possibility of a positive rate of population growth. Part A.5 of the appendix shows
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that with this setting for σ , the steady-state values of r , π , x, and c are uniquely
determined as

r = 0(54)

1 + π = β(55)

1 + x = 1/β(56)

and

c = 1(57)

whereas the steady-state value of m need only satisfy

(1 + n)m ≥ β(58)

Part A.5 of the appendix also shows that with this setting for σ , individual house-
holds from all cohorts s = 0, 1, 2, . . . choose

cs
t = hs

t = 1(59)

for all t = s, s + 1, s + 2, . . . .
Thus, when fiscal transfers undo the distributional effects that would otherwise

result from this policy of monetary contraction, the economy with population
growth behaves like one with a single representative agent. In (54) and (55),
the nominal interest rate reaches its lower bound of zero as the rate of deflation
coincides with the rate of time preference; in (56), meanwhile, the real interest rate
is pinned down by the rate of time preference, exactly as in the standard Sidrauski
(1967) model. Equation (58) confirms that without distributional effects, the real
balance effect vanishes, allowing Krugman (1998) and Svensson’s (1999) liquidity
trap to reemerge, as the steady-state level of real balances is no longer uniquely
determined. Nevertheless, outcomes in this equilibrium with zero nominal interest
rates are good, not bad: (57) and (59) reveal that when complemented by the
appropriate fiscal transfer scheme, the Friedman rule again supports the unique
symmetric Pareto-optimal allocation. Steady-state utility under this monetary–
fiscal policy regime is higher than under any of the policies of constant money
growth via equal-lump sum transfers.

“Le bon dieu est dans le détail,” or so said Gustave Flaubert. More recently,
others have paraphrased: “the Devil is in the details.”7 Either way—good God or
Devil—the proverb applies here. Zero nominal interest rates can be very good or
very bad: Which one depends critically on the details of how the policy is actually
implemented.

7 See Titelman (1996, p.119) for a brief discussion.
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APPENDIX

A.1. Deriving the Infinite-Horizon Budget Constraint. To derive the infinite-
horizon budget constraint (6), multiply the single-period budget constraint (3) by
Qt and rearrange to obtain

Qt
(
Ms

t + Bs
t

) + Qt
(
Ts

t + Pt hs
t

) ≥ Qt Pt cs
t + (Qt − Qt+1)Ms

t+1 + Qt+1
(
Ms

t+1 + Bs
t+1

)
Sum from t through T ≥ t to obtain

Qt
(
Ms

t + Bs
t

) +
T∑

u=t

Qu
(
Ts

u + Pt hs
t

) ≥
T∑

u=t

Qu

[
Pucs

u +
(

ru

1 + ru

)
Ms

u+1

]

+ QT+1
(
Ms

T+1 + Bs
T+1

)
Now use the no-Ponzi-scheme constraint (5) at t = T to obtain

Qt
(
Ms

t + Bs
t

) +
∞∑

u=t

Qu
(
Ts

u + Pt hs
t

) ≥
T∑

u=t

Qu

[
Pucs

u +
(

ru

1 + ru

)
Ms

u+1

]

Finally, take the limit as T → ∞ to arrive at (6).

A.2. Solving the Household’s Problem. Let λs
t and µs

t denote the nonnegative
Lagrange multipliers on the household’s budget and cash-in-advance constraints
for period t. Since the household’s utility function is increasing and concave, nec-
essary conditions for optimality include the usual first-order and complementary
slackness conditions, which are given by

1

cs
t − (1/γ )

(
hs

t

)γ = λs
t + µs

t(A.1)

(
hs

t

)γ−1

cs
t − (1/γ )

(
hs

t

)γ = λs
t(A.2)

λs
t

Pt
= β

(
λs

t+1 + µs
t+1

)
Pt+1

(A.3)

λs
t + µs

t

(1 + rt )Pt
= β

(
λs

t+1 + µs
t+1

)
Pt+1

(A.4)

Ms
t + Ts

t + Bs
t

Pt
+ hs

t = cs
t + Bs

t+1

(1 + rt )Pt
+ Ms

t+1

Pt
(A.5)

Ms
t + Ts

t + Bs
t

Pt
− Bs

t+1

(1 + rt )Pt
≥ cs

t(A.6a)
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µs
t ≥ 0(A.6b)

and

µs
t

[
Ms

t + Ts
t + Bs

t

Pt
− Bs

t+1

(1 + rt )Pt
− cs

t

]
= 0(A.6c)

for all t = s, s + 1, s + 2, . . . .
Necessary conditions also include the transversality condition

lim
t→∞ Qt+1Wt+1 = lim

t→∞ Qt+1
(
Ms

t+1 + Bs
t+1

) = 0(A.7)

To derive (A.7), note first that since the net nominal interest rate must always be
nonnegative, the sequence {Qt}∞

t=0 is nonincreasing, with

Qt = (1 + rt )Qt+1 ≥ Qt+1

for all t = 0, 1, 2, . . . . Note, too, that {Qt+1 Ws
t+1}∞

t=s is also nonincreasing, since for
any t = s + 1, s + 2, s + 3, . . . , the definition of Ws

t+1, the period t budget constraint,
the fact that Qt ≥Qt+1, and the nonnegativity constraints from (4) imply

Qt+1Ws
t+1 − Qt Ws

t = Qt+1
(
Ms

t+1 + Bs
t+1

) − Qt
(
Ms

t + Bs
t

) − Qt
(
Ts

t + Pt hs
t

)
≤ (Qt+1 − Qt )Ms

t+1 − Qt Pt cs
t

≤ 0

Next, note that if {c s
t , hs

t , Ms
t+1, Bs

t+1}∞
t=s are optimal choices for the representative

household of cohort s, the implied sequence {Qt+1 Ws
t+1}∞

t=s must satisfy

inf
t≥s

Qt+1Ws
t+1 = 0

To see this, suppose to the contrary that there exists an ε > 0 such that Qt+1 Ws
t+1 ≥

ε for all t = s, s + 1, s + 2, . . . , and construct new sequences {c̃s
t , h̃s

t , M̃s
t+1, B̃s

t+1}∞t=s
as

c̃s
s = cs

s + ε

Qs Ps
, c̃s

t = cs
t for t = s + 1, s + 2, s + 3, . . .

h̃s
t = hs

t for t = s, s + 1, s + 2, . . .

M̃s
t+1 = Ms

t+1 for t = s, s + 1, s + 2, . . .

B̃s
t+1 = Bs

t+1 − ε

Qt+1
for t = s, s + 1, s + 2, . . .



1296 IRELAND

These new sequences satisfy all of the household’s constraints: (2)–(5) for all
t = s, s + 1, s + 2, . . . . Moreover, they provide the household with a higher level
of utility than the original sequences. But this contradicts the assumption that the
original sequences are optimal. Hence inft≥s Qt+1Ws

t+1 = 0 must hold.
Together {Qt+1 W s

t+1}∞
t=s are nonincreasing and inft≥s Qt+1Ws

t+1 = 0 imply that
(A.7) must hold at the optimum. This establishes that (A.1)–(A.7) are necessary
conditions for optimality.

To prove that (A.1)–(A.7) are also sufficient conditions for optimality, suppose
that {c s

t , hs
t , Ms

t+1, Bs
t+1}∞

t=s satisfy (A.1)–(A.7), but that alternative sequences
{ĉs

t , ĥs
t , M̂s

t+1, B̂s
t+1}∞t=s satisfy (2)–(5) for all t = s, s + 1, s + 2, . . . , and provide the

household with a higher level of utility. Then

0 < lim
T→∞

T∑
t=s

β t−s{ ln
[
ĉs

t − (1/γ )
(
ĥs

t

)γ ] − ln
[
cs

t − (1/γ )
(
hs

t

)γ ]}

< lim
T→∞

T∑
t=s

β t−s

{[
1

cs
t − (1/γ )

(
hs

t

)γ

] (
ĉs

t − cs
t

) −
[ (

hs
t

)γ−1

cs
t − (1/γ )

(
hs

t

)γ

] (
ĥs

t − hs
t

)}

= lim
T→∞

T∑
t=s

β t−s[λs
t

(
ĉs

t − cs
t

) − λs
t

(
ĥs

t − hs
t

) + µs
t

(
ĉs

t − cs
t

)]

≤ lim
T→∞

T∑
t=s

β t−sλs
t

[
M̂s

t − Ms
t

Pt
+ B̂s

t − Bs
t

Pt
− M̂s

t+1 − Ms
t+1

Pt
− B̂s

t+1 − Bs
t+1

(1 + rt )Pt

]

+ lim
T→∞

T∑
t=s

β t−sµs
t

[
M̂s

t − Ms
t

Pt
+ B̂s

t − Bs
t

Pt
− B̂s

t+1 − Bs
t+1

(1 + rt )Pt

]

= lim
T→∞

βT−sλs
T

(
Ms

T+1 − M̂s
T+1

)
PT

+ βT−s
(
λs

T + µs
T

)(
Bs

T+1 − B̂s
T+1

)
(1 + rT)PT

=
(

λs
t + µs

t

Qs Ps

)
lim

T→∞
[
QT+1

(
Ms

T+1 + Bs
T+1

) − QT+1
(
M̂s

T+1 + B̂s
T+1

)]

= −
(

λs
t + µs

t

Qs Ps

)
lim

T→∞
QT+1

(
M̂s

T+1 + B̂s
T+1

)
≤ 0

by the concavity of the utility function, by (A.1) and (A.2), by (2), (3), (A.5),
and (A.6c), by (A.3) and (A.4), by (A.3) and (A.4) again, by (A.7), and by (5).
But all of this contradicts the assumption that {ĉs

t , ĥs
t , M̂s

t+1, B̂s
t+1}∞t=s provide the

household with higher utility than {c s
t , hs

t , Ms
t+1, Bs

t+1}∞
t=s . Hence, (A.1)–(A.7) are

both necessary and sufficient for a solution to the household’s problem.
Now let ms

t , bs
t , τ s

t , π t , xt, and a s
t be as defined in the text. Substitute (A.4) into

(A.3) to obtain

µs
t = rtλ

s
t(A.8)
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and combine this result with (A.1) and (A.2) to arrive at (9) from the text. Use
(A.5) and (A.8) to rewrite (A.6a)–(A.6c) as (10) from the text.

Next, consider (A.4), which can be rewritten using (7) and (A.1) as

cs
t+1 − (1/γ )

(
hs

t+1

)γ = β(1 + xt )
[
cs

t − (1/γ )
(
hs

t

)γ ]
(A.9)

the Euler equation linking the household’s intertemporal marginal rate of substi-
tution to the real interest rate. Multiply (A.5) by PtQt and, as above, sum from t
through T ≥ t and take the limit as T → ∞ to obtain

Qt
(
Ms

t + Bs
t

) +
∞∑

u=t

Qu
(
Ts

u + Pt hs
t

) =
∞∑

u=t

Qu

[
Pucs

u +
(

ru

1 + ru

)
Ms

u+1

]
(A.10)

which is just (6) with equality. Since

Qu

Qt Pt
=

[
u−1∏
v=t

(
1

1 + xv

)]
1
Pu

(A.10) can be rewritten as

as
t +

∞∑
u=t

[
u−1∏
v=t

(
1

1 + xv

)] (
τ s

u + hs
u

) =
∞∑

u=t

[
u−1∏
v=t

(
1

1 + xv

)]

×
[

cs
u + ru(1 + πu+1)ms

u+1

1 + ru

]
(A.11)

Substitute (9), (10), and (A.9) into (A.11) to obtain (11) from the text.
Use (7) and (8) to recast (A.5) in real terms as

as
t + τ s

t + hs
t = cs

t +
(

1
1 + xt

) (
as

t+1 + rt ms
t+1

)
(A.12)

then use (9) and (10) to rewrite (A.12) as (12) from the text. Finally, use

Qt+1

Qs Ps
=

[
t∏

v=s

(
1

1 + xv

)]
1

Pt+1

and (8) to replace (A.7) with (13) from the text.

A.3. Deriving the Steady-State Conditions. Equations (24)–(28) describe the
equilibrium behavior of the five aggregate variables xt, r t, π t+1, mt, and ct under
policies of constant money growth via equal lump-sum monetary transfers; in a
steady-state equilibrium, xt = x, r t = r , π t+1 = π , mt = m, and ct = c for all t = 0,



1298 IRELAND

1, 2, . . . . Equations (24), (25), and (27) immediately imply that these steady-state
values must satisfy (29), (31), (33).

In a steady state, (28) becomes

m =
(

1 + x
1 + n

) [
(1 + σ )m −

(
1

1 + r

)
rc

]

or, using (26),

m =
(

1 + x
1 + n

) [
(1 + σ )m −

(
1

1 + r

)
r(1 + n)(1 + π)m

]

Divide both sides of this last equality by m and rearrange using (29) to obtain (30);
(30) then allows (26) to be rewritten as (32).

A.4. Deriving the Lower Bound on Money Growth. In light of the Euler
Equation (A.9), c s

t − (1/γ )(hs
t )γ > 0 for all t = s, s + 1, s + 2, . . . , as required by

(4), if and only if c s
s − (1/γ )(hs

s )γ > 0. Combining (9), (11), and (21) with the initial
condition a s

s = 0, which applies to any household born into a steady state with
n > 0, reveals that

cs
s − (1/γ )

(
hs

s

)γ = (1 − β)
(

1 + x
x

) [
σm +

(
γ − 1

γ

) (
1

1 + r

)γ /(γ−1)
]

in any steady state with n > 0. Equivalently, using (33),

cs
s − (1/γ )

(
hs

s

)γ = c − 1
γ

(
1

1 + r

)γ /(γ−1)

− (1 − β)m

When r = 0, (40) and (41) imply that the right-hand side of this last equality is
strictly positive if and only if the money growth rate satisfies (43).

A.5. Characterizing the Steady State under the Friedman Rule with Fiscal
Transfers. Equations (49)–(53) determine the steady-state values x, r , π , m, and
c under the monetary–fiscal policy regime described in the text. When, under this
regime, the money growth rate σ is set equal to β (1 + n) − 1, (49) and (50) imply

1 + x = (1 + r)/β(A.13)

and

1 + π = β(A.14)
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Substituting (51), (A.13), and (A.14) into (53) yields

(
1

1 + r

)1/(γ−1)

= 1
γ

(
1

1 + r

)γ /(γ−1)

+
(

1 − β

1 + r − β

) [
r(1 + σ )m +

(
γ − 1

γ

) (
1

1 + r

)1/(γ−1)
]

In light of (52), however, this last expression collapses to

γ (1 + r)2 − (1 + γ )(1 + r) + 1 = 0(A.15)

Equation (A.15) admits two possible solutions for r , r = 0 and r = (1 − γ )/γ ,
but only the first of these is nonnegative as required by (52). It therefore follows
immediately from (51) and (A.13)–(A.15) that the steady-state values of r, π , x,
and c are uniquely determined as shown in (54)–(57), whereas (52) requires only
that m satisfy (58) from the text.

Equations (11) and (12), meanwhile, characterize each individual household’s
pattern of consumption and asset holdings under arbitrary government policies.
In the steady state just described, however, (54) and (56) must hold, as must
the expressions a s

s + τ s
s = (1 + σ )m = β (1 + n)m and τ s

t = τ̄ = (σ − n)m =
(β − 1)(1 + n)m for all t = s + 1, s + 2, s + 3, . . . , called for by the design of policy
regime. Hence, for all s = 0, 1, 2, . . . , these equations specialize to

cs
t = 1

and

as
t+1 = (1 + n)m

for all t = s, s + 1, s + 2, . . . . The first of these two expressions, together with (9)
and (54), then implies that (59) must hold.
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