
Review of Economic Dynamics 6 (2003) 120–134

www.elsevier.com/locate/red

Implementing the Friedman rule

Peter N. Irelanda,b

a Department of Economics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
b National Bureau of Economic Research, Cambridge, MA 02138, USA

Received 27 July 2000

Abstract

In cash-in-advance models, necessary and sufficient conditions for the existence of an equilibrium
with zero nominal interest rates and Pareto optimal allocations place restrictions mainly on the
very long-run, or asymptotic, behavior of the money supply. When these asymptotic conditions are
satisfied, they leave the central bank with a great deal of flexibility to manage the money supply
over any finite horizon. But what happens when these asymptotic conditions fail to hold? This paper
shows that the central bank can still implement the Friedman rule if its actions are appropriately
constrained in the short run.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Milton Friedman (1969) presents his famous rule for optimal monetary policymaking.
“Our final rule for the optimum quantity of money,” he writes (p. 34), “is that it will be
attained by a rate of price deflation that makes the nominal rate of interest equal to zero.”
Friedman also suggests that this rule can be implemented by steadily contracting the money
supply at the representative household’s rate of time preference.

Wilson (1979) and Cole and Kocherlakota (1998) assess Friedman’s proposals using
fully-specified, general equilibrium models in which money is introduced through the
imposition of a cash-in-advance constraint. These authors confirm the relevance of the
Friedman rule by demonstrating that equilibrium allocations are efficient if and only
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if the nominal interest rate equals zero. However, they also find that the Friedman
rule can be implemented through any one from a broad class of monetary policies.
Some of these policies call for the money supply to expand over an arbitrarily long,
but finite, horizon; others call for the money supply to contract, but at a rate that is
slower than the representative household’s rate of time preference. In fact, Wilson, and
Cole and Kocherlakota show that necessary and sufficient conditions for the existence
of an equilibrium with zero nominal interest rates and Pareto optimal allocations place
restrictions mainly on the asymptotic behavior of the money supply: these restrictions
require the money supply to eventually contract at a rate that is no faster than the
representative household’s rate of time preference.

These asymptotic conditions present a double-edged sword to a central banker who
wishes to implement the Friedman rule. For when the conditions are satisfied, they leave
the policymaker with considerable leeway in managing the money supply over any finite
horizon. But what should a central banker do when, for reasons beyond his or her control,
these asymptotic conditions fail to hold? Must the policymaker abandon the Friedman rule
altogether? Or can he or she still find a way to manage the money supply so that nominal
interest rates are zero and equilibrium allocations are efficient, at least in the short run?

To answer these questions, Section 2 sets up a cash-in-advance model like those used
by Wilson (1979) and Cole and Kocherlakota (1998) and, for the sake of completeness,
restates the asymptotic conditions that are both necessary and sufficient for implementing
the Friedman rule over the infinite horizon. Section 3 then assumes that these asymptotic
conditions do not hold and characterizes optimal monetary policies in this alternative case.
There, the results indicate that the central bank can still implement the Friedman rule,
but only if its policies are suitably constrained in the short run. Section 4 considers a
stochastic variant of the same problem. Surprisingly, in this stochastic case, the conditions
for implementing optimal allocations most closely resemble those derived for the original
model in Section 2: once again, they serve mainly to restrict the long-run behavior of the
money supply. Section 5 briefly concludes.

2. A cash-in-advance model

An infinitely-lived representative household has one unit of productive time during each
periodt = 0,1,2, . . . . Its preferences are described by the utility function

∞∑
t=0

βtU(ct ,1− nt ),

wherect denotes its consumption and 1− nt its leisure during periodt . The discount
factor satisfies 0< β < 1. The single-period utility functionU is strictly increasing in
both arguments, strictly concave, and twice continuously differentiable. LetUi andUij ,
i, j = 1,2, denote the first and second derivatives ofU , and fory ∈ (0,1), define

V (y)= U1(y,1− y)
U2(y,1− y) .
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It will be useful in all of what follows to assume thatV is strictly decreasing with
limy→0V (y) = ∞ and limy→1V (y) = 0. SinceU is strictly increasing and strictly
concave, a sufficient condition forV ′ < 0 isU12 � 0.

The household enters periodt with moneyMt and bondsBt . The goods market opens
first; here, the description of production and trade draws on Lucas (1980) interpretation
of the cash-in-advance model. Suppose that the representative household consists of two
members: a shopper and a worker. The shopper purchases consumption from workers from
other households at the nominal pricePt , subject to the cash-in-advance constraint

Mt

Pt
� ct .

The worker, meanwhile, produces output according to the linear technologyyt = nt and
sells this output to shoppers from other households forPtnt units of money.

The asset market opens last. In this end-of-period asset market, the representative
household receives a lump-sum nominal transferHt from the central bank and the
household’s bonds mature, providingBt additional units of money. The household spends
Bt+1/(1 + rt ) on new bonds, wherert is the net nominal interest rate, and carriesMt+1
units of money into periodt + 1. The household’s budget constraint is, therefore,

Mt +Ht +Bt
Pt

+ nt � ct + Bt+1/(1+ rt )+Mt+1

Pt
.

In addition to the cash-in-advance and budget constraints, the household’s choices must
satisfy the nonnegativity constraints

ct � 0, 1 � nt � 0, Mt+1 � 0.

And while the household can choose negative values ofBt+1, it is not permitted to borrow
more than it can ever repay. LetQt denote the present discounted value in the period 0
asset market of one unit of money received in the periodt asset market, so thatQ0 = 1 and

Qt =
t−1∏
s=0

(
1

1+ rs
)

for t = 1,2,3, . . . .

Then the no-Ponzi-game constraints can be formalized as

Wt+1 =Qt
(
Mt+1 + Bt+1

1+ rt
)

+
∞∑

s=t+1

Qs(Hs +Psns)� 0.

Thus, the representative household chooses{ct , nt ,Mt+1,Bt+1}∞t=0 to maximize its
utility function subject to its cash-in-advance, budget, nonnegativity, and no-Ponzi-game
constraints, each of which must hold for allt = 0,1,2, . . . . When the market-clearing
conditions

yt = ct = nt , Mt+1 =Mt +Ht, Bt+1 = 0

are imposed, necessary and sufficient conditions for a solution to the household’s problem
can be written as
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U1(yt ,1− yt )= λt +µt , (1)

U2(yt ,1− yt )= λt , (2)
λt

Pt
= β(λt+1 +µt+1)

Pt+1
, (3)

λt

(1+ rt )Pt = βλt+1

Pt+1
, (4)

µt � 0,
Mt

Pt
� yt , µt

(
Mt

Pt
− yt

)
= 0, (5)

for all t = 0,1,2, . . . , and

lim
t→∞

βtλtMt+1

Pt
= 0, (6)

where λt and µt are Lagrange multipliers on the budget and cash-in-advance con-
straints for periodt . Accordingly, an equilibrium can be defined as a set of sequences
{yt , λt ,µt , rt ,Pt ,Mt+1}∞t=0 that satisfy (1)–(6), with the initial conditionM0 pinned down
by a choice of nominal units.

Under the maintained assumptions on the household’s utility function, there is a unique
symmetric Pareto optimal allocation for this economy. This allocation hasyt = y∗ for
all t = 0,1,2, . . . , wherey∗ satisfies the efficiency conditionV (y∗) = 1: the marginal
rate of substitution between leisure and consumption equals the corresponding marginal
rate of transformation. What monetary policies, defined as sequences{Mt+1}∞t=0, allow
for the existence of an equilibrium in which allocations are Pareto optimal? To answer
this question, Wilson (1979) and Cole and Kocherlakota (1998) present results like the
following.

Proposition 1. An equilibrium with yt = y∗ for all t = 0,1,2, . . . exists if and only if

inf
t
β−tMt > 0 (7)

and

lim
t→∞Mt+1 = 0. (8)

Proof. To begin, suppose that (7) and (8) are satisfied, and setyt = y∗, µt = 0, rt = 0,
λt =U1(y

∗,1−y∗)=U2(y
∗,1−y∗), andPt = βtP0 for all t = 0,1,2, . . . , whereP0> 0

is chosen below. Clearly, these values satisfy (1)–(4). Sinceµt = 0, (5) requires that

β−tMt � P0y
∗ for all t = 0,1,2, . . . .

But (7) guarantees the existence ofε > 0 such thatβ−tMt � ε for all t = 0,1,2, . . . , and
thereby allows this last condition to be satisfied for any choice ofP0 � ε/y∗. Meanwhile,
(8) guarantees that (6) will hold. Thus, (7) and (8) are sufficient conditions for the existence
of an optimal equilibrium.

Next, suppose that an equilibrium withyt = y∗ for all t = 0,1,2, . . . exists. By
(1)–(4), λt = U1(y

∗,1 − y∗) = U2(y
∗,1 − y∗), µt = 0, rt = 0, andPt = βtP0 > 0 for

all t = 0,1,2, . . . in any such equilibrium. Thus, (5) requires that

β−tMt � P0y
∗ > 0 for all t = 0,1,2, . . . ,
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which implies that (7) must be satisfied. Meanwhile, (6) implies that (8) must hold. This
establishes that (7) and (8) are also necessary conditions for the existence of an optimal
equilibrium, completing the proof.✷

Proposition 1 and its proof support Friedman’s (1969) assertion that in monetary
economies, Pareto optimal allocations are associated with price deflations and zero nominal
interest rates. Friedman also suggests that his zero-nominal-interest-rate rule can be
implemented by steadily contracting the money supply at the representative household’s
rate of time preference and, indeed, the policy that setsMt = βtM0 for all t = 0,1,2, . . .
satisfies both (7) and (8). As emphasized by Wilson (1979) and Cole and Kocherlakota
(1998), however, many other monetary policies also satisfy (7) and (8), including ones that
call for positive rates of money growth over arbitrarily long, but finite, horizons and ones
that setMt = πtM0, with 1> π � β , for all t = 0,1,2, . . . .

In fact, although (7) does require the money supply to be strictly positive in every period,
the additional constraints imposed by (7) and (8) apply only to the very long-run behavior
of the money supply. Condition (7) places a lower bound on the asymptotic money growth
rate: since the gross inflation rate equalsβ under the Friedman rule, the money stock
must eventually grow at a rate that is at least as large asβ to prevent the cash-in-advance
constraint from binding. Condition (8) places an upper bound on the asymptotic money
growth rate: evidently, the money supply must eventually contract to keep the nominal
interest rate fixed at zero. Together, therefore, (7) and (8) simply require the money supply
to asymptotically contract at a rate that is no faster than the representative household’s rate
of time preference.

3. Implementing the Friedman rule in the short run

When (7) and (8) hold, they leave the central bank with a great deal of flexibility; in
fact, they allow the central bank to chooseany time path for the money supply overany
finite horizon while still implementing the Friedman rule. But what should a central banker
do when (7) or (8) fails to hold?

When (7) fails to hold, the money supply contracts asymptotically at a rate that exceeds
the representative household’s rate of time preference. A second result, resembling those
found in Woodford (1994), helps in considering this case.

Proposition 2. Let the money supply contract at a constant rate that exceeds the
representative household’s rate of time preference, so that Mt+1/Mt = π < β for all
t = 0,1,2, . . . . If the single-period utility function U takes the additively separable form

U(c,1− n)= u(c)+ v(1 − n), (9)

where the functions u and v are strictly increasing, strictly concave, and twice continuously
differentiable and if, in addition, the function u satisfies

lim
c→0

c u′(c) > 0, (10)

then no equilibrium exists.
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Proof. The proof proceeds in two steps. The first step shows that whenMt+1/Mt = π < β
for all t = 0,1,2, . . . and when utility is additively separable as in (9), the only equilibria
that can possibly exist are those in which real balances approach zero asymptotically. The
second step shows that under the additional assumption that (10) is satisfied, even those
equilibria fail to exist.

Thus, to begin, suppose thatMt+1/Mt = π < β for all t = 0,1,2, . . . and that utility is
additively separable as in (9). Define the sequence{Ft }∞t=0 by

Ft =
(
Mt

Pt

)
v′(1− yt )� 0 for all t = 0,1,2, . . . .

In any equilibrium, (2), (3), and (5) require that

v′(1− yt)
Pt

= λt

Pt
= β(λt+1 +µt+1)

Pt+1
� βλt+1

Pt+1
= βv′(1− yt+1)

Pt+1
,

and hence

Ft �
(
β

π

)
Ft+1>Ft+1 for all t = 0,1,2, . . . .

Evidently, {Ft }∞t=0 is strictly decreasing and bounded below by zero; it follows that this
sequence converges to some numberF � 0.

Next, define the sequence{Gt }∞t=0 by

Gt =
(
Mt

Pt

)
u′(yt )� 0 for all t = 0,1,2, . . . .

In any equilibrium, (1), (3), and (5) require that

u′(yt )
Pt

= λt +µt
Pt

� λt

Pt
= β(λt+1 +µt+1)

Pt+1
= βu′(yt+1)

Pt+1
,

and hence

Gt �
(
β

π

)
Gt+1>Gt+1 for all t = 0,1,2, . . . .

Thus,{Gt }∞t=0 is also strictly decreasing and bounded below by zero; it, too, converges to
some numberG� 0.

Now define the sequence{D1
t }∞t=0 by

D1
t =Mt

[
β(λt+1 +µt+1)

Pt+1
− λt

Pt

]
for all t = 0,1,2, . . . .

Equation (3) and the assumptions thatMt+1/Mt = π < β < 1 imply thatD1
t = 0 for all

t = 0,1,2, . . . and that

lim
t→∞D

1
t = 0.

Meanwhile, (1) and (2) imply that

D1
t =

(
β

π

)
Gt+1 − Ft .
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Taken together, these last two results imply that

F =
(
β

π

)
G.

Finally, define the sequence{D2
t }∞t=0 by

D2
t =

(
β

π

)
Gt −Ft for all t = 0,1,2, . . . ,

and note that under this definition,

lim
t→∞D

2
t =

(
β

π

)
G− F = 0.

Note also that in any equilibrium, (1), (2), and (5) require that

u′(yt )= λt +µt � λt = v′(1− yt ) for all t = 0,1,2, . . . .

Since bothu andv are strictly concave, this last set of requirements implies thatyt � y∗ for
all t = 0,1,2, . . . where, as before,y∗ is the unique value that satisfiesV (y∗)= 1. More
specifically, this last set of requirements implies that(

β

π

)
u′(yt )− v′(1− yt )�

(
β

π
− 1

)
u′(yt )�

(
β

π
− 1

)
u′(y∗) > 0

so that, in particular,(
β

π

)
u′(yt )− v′(1− yt )

is bounded away from zero. The definitions

D2
t =

(
β

π

)
Gt −Ft =

(
Mt

Pt

)[(
β

π

)
u′(yt)− v′(1− yt )

]

then imply that for limt→∞D2
t = 0 to hold as required,

lim
t→∞

Mt

Pt
= 0

must also hold in any equilibrium. This establishes that whenMt+1/Mt = π < β for all
t = 0,1,2, . . . and when utility is additively separable as in (9), the only equilibria that can
possibly exist are those in which real balances approach zero asymptotically.

To show that the additional restriction in (10) rules out all such equilibria, suppose to
the contrary that an equilibrium of this type does exist when (10) is satisfied, and return to
the definitions that imply

D2
t =

(
Mt

Pt

)[(
β

π

)
u′(yt )− v′(1− yt )

]
for all t = 0,1,2, . . . .

Combine this last equality with (1), (2), and (5) to obtain

D2
t �

(
Mt

Pt

)(
β

π
− 1

)
u′(yt )�

(
β

π
− 1

)
ytu

′(yt )� 0 for all t = 0,1,2, . . . .
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Since, as shown above, limt→∞D2
t = 0 must hold in any equilibrium, it follows that

lim
t→∞ytu

′(yt )= 0

must hold as well. But limt→∞Mt/Pt = 0 must also hold in any equilibrium; hence, (5)
requires that

lim
t→∞yt = 0

as well. Taken together, however, these last two results contradict the assumption that (10)
is satisfied. This establishes that whenMt+1/Mt = π < β for all t = 0,1,2, . . . and when
the utility function satisfies the restrictions in (9) and (10), no equilibrium exists.✷

Scheinkman (1980), Lucas and Stokey (1987), and Woodford (1994) also use assump-
tions like (9) and (10). They interpret (10), in particular, as a condition that makes the gains
from monetary trade sufficiently important to rule out equilibria in which self-fulfilling in-
flations drive the level of real balances to zero as the price level grows faster, or contracts
more slowly, than the money supply. These conditions are satisfied by a wide range of
utility functions, including those of the familiar form

U(c,1− n)= c1−σ − 1

1− σ + v(1− n) for all σ � 1.

Proposition 2 suggests that when (7) fails to hold, the problem involves the likely
nonexistence of an equilibrium, not just the suboptimality of equilibrium allocations. What
happens when a central bank adopts a policy that is inconsistent with the existence of an
equilibrium? Exploring the subtleties of this issue is left for future research; instead, the
remainder of this paper focuses on the case in which the conditions of Proposition 1 are
violated because (8) does not hold.

Suppose, for example, that a central banker is appointed at the beginning of period 0
and granted the authority to choose{Ht}T−1

t=0 , the monetary transfers for the firstT periods.
With the initial conditionM0 taken as given, this central banker’s control over{Ht }T−1

t=0
gives him or her control over{Mt+1}T−1

t=0 , the path for the money supply through the
beginning of periodT .

This central banker’s term lasts for onlyT periods, however: during periodT , a new
central banker takes over and arbitrarily decides that the money supply will grow at the
constant gross rateπ � 1, so thatMT+j = πjMT for all j = 0,1,2, . . . . Under the
maintained assumptions on the household’s utility function, there is a unique steady-
state equilibrium under this policy, in which outputyt and real balancesmt = Mt/Pt
are constant and equal tōy, whereȳ < y∗ uniquely satisfiesV (ȳ) = π/β . So suppose
in addition that, independent of the first central banker’s decisions,yT+j =mT+j = ȳ for
all j = 0,1,2, . . . .

The assumption thatπ � 1 implies that (8) will not hold when the first central banker
takes office at the beginning of period 0. The question now becomes: Can this first central
banker, through an appropriate choice of{Mt+1}T−1

t=0 , nevertheless guarantee the existence
of an equilibrium in which nominal interest rates are zero and allocations are efficient, at
least in the short run?



128 P.N. Ireland / Review of Economic Dynamics 6 (2003) 120–134

As a first step in answering this question, note that withMT+j = πjMT andyT+j =
mT+j = ȳ for all j = 0,1,2, . . . , (1)–(5) are satisfied withλt = U2(ȳ,1 − ȳ), µt =
U1(ȳ,1− ȳ)−U2(ȳ,1− ȳ) > 0, rt = V (ȳ)−1, andPt =Mt/ȳ for all t = T ,T +1,T +2,
. . . , and (6) is satisfied as well. Hence, the values influenced by the first central banker,
{yt , λt ,µt , rt ,Pt ,Mt+1}T−1

t=0 , need only satisfy (1), (2), and (5) for allt = 0,1, . . . , T − 1,
(3) and (4) for allt = 0,1, . . . , T − 2,

λT−1

PT−1
= βU1(ȳ,1− ȳ)ȳ

MT
(11)

and
λT−1

(1+ rT−1)PT−1
= βU2(ȳ,1− ȳ)ȳ

MT
, (12)

where these last two conditions correspond to (3) and (4) fort = T −1. These observations
are useful in establishing the following result.

Proposition 3. Suppose that MT+j = πjMT , with π � 1, for all j = 0,1,2, . . . and
that this policy puts the economy in its unique steady state from period T forward, with
yT+j = mT+j = ȳ for all j = 0,1,2, . . . . Then an equilibrium with yt = y∗ for all
t = 0,1, . . . , T − 1 exists if and only if

MT > 0 (13)

and

Mt � βt
[
U1(y

∗,1− y∗)y∗

βT U1(ȳ,1− ȳ)ȳ
]
MT for all t = 0,1, . . . , T − 1. (14)

Proof. To begin, suppose that (13) and (14) are satisfied, and setλt = U1(y
∗,1 − y∗) =

U2(y
∗,1− y∗), µt = 0, yt = y∗, and

Pt = βt
[
U1(y

∗,1− y∗)
βT U1(ȳ,1− ȳ)ȳ

]
MT ,

for all t = 0,1, . . . , T − 1. In addition, setrt = 0 for all t = 0,1, . . . , T − 2 andrT−1 =
V (ȳ)− 1. Condition (13) guarantees thatPt > 0 for all t = 0,1, . . . , T − 1, as required for
the existence of this equilibrium. Clearly, (1) and (2) hold for allt = 0,1, . . . , T − 1 and,
sincePt+1 = βPt , (3) and (4) hold for allt = 0,1, . . . , T −2. Equations (11) and (12) hold
as well. Sinceµt = 0, (5) requires that

Mt � βt
[
U1(y

∗,1− y∗)y∗

βT U1(ȳ,1− ȳ)ȳ
]
MT for all t = 0,1, . . . , T − 1,

but this condition coincides with (14) and is therefore guaranteed to hold. Thus, (13)
and (14) are sufficient conditions for the existence of an equilibrium withyt = y∗ for
all t = 0,1, . . . , T − 1.

Next, suppose that an equilibrium withyt = y∗ for all t = 0,1, . . . , T − 1 exists. By
(1)–(3) and (11),λt =U1(y

∗,1− y∗)=U2(y
∗,1− y∗), µt = 0, and

Pt = βt
[
U1(y

∗,1− y∗)
βT U1(ȳ,1− ȳ)ȳ

]
MT > 0,



P.N. Ireland / Review of Economic Dynamics 6 (2003) 120–134 129

for all t = 0,1, . . . , T − 1 in any such equilibrium; this condition implies that (13) must
hold. In addition, (5) requires that

Mt � βt
[
U1(y

∗,1− y∗)y∗

βT U1(ȳ,1− ȳ)ȳ
]
MT for all t = 0,1, . . . , T − 1,

and this condition says that (14) must hold. This establishes that (13) and (14) are
also necessary conditions for the existence of an equilibrium withyt = y∗ for all t =
0,1, . . . , T − 1, completing the proof. ✷

Before going on to interpret (13) and (14), it is useful to note that Proposition 3
holds much more generally. In particular, the assumption that the economy is in steady
state from periodT forward is not essential. All that is required is that the monetary
policy adopted from periodT forward give rise to an equilibrium in which the cash-in-
advance constraint binds during periodT , so thatMT /PT = yT for someyT < y∗. In
the more general case, the proof goes through unchanged, withyT in place of ȳ. As
stated, however, the proposition makes clear that optimal allocations can be achieved in
periodst = 0,1, . . . , T − 1 even when the rate of money growth is positive, even when
the cash-in-advance constraint binds, and even when allocations are suboptimal forall
t = T ,T + 1, T + 2, . . . .

Proposition 3 indicates that the Friedman rule need not be abandoned when (8) fails to
hold: the central bank can still select{Mt+1}T−1

t=0 in a way that guarantees the existence
of an equilibrium in which the nominal interest rate is zero for allt = 0,1, . . . , T − 2
and allocations are efficient for allt = 0,1, . . . , T − 1. Condition (13) simply insures that
money is always in positive supply, given that (14) must hold for allt = 0,1, . . . , T −1 and
thatMt+1 = πMt for all t = T ,T +1, T +2, . . . . Condition (14), meanwhile, places upper
and lower bounds on the money growth rate and thereby provides finite-horizon analogs
to (7) and (8).

Consider (14) fort = 0. Since the initial conditionM0 is given, this constraint places an
upper bound onMT :

[
βT U1(ȳ,1− ȳ)ȳ
U1(y∗,1− y∗)y∗

]
M0 �MT . (15)

Thus, like (8), (14) implies that money growth must be sufficiently slow if the nominal
interest rate is to remain at zero. Given a choice ofMT that satisfies (15), (14) also places
lower bounds onMt for all t = 1,2, . . . , T − 1. Thus, like (7), (14) implies that money
growth must be sufficiently fast to keep the cash-in-advance constraint from binding.

Conditions (13) and (14) still leave the central bank with some flexibility in choosing
its policy: the money supply can expand for the firstT − 1 periods, for instance, provided
that it contracts in periodT − 1 so that (15) holds. Unlike (7) and (8), however, (13) and
(14) do impose nontrivial restrictions on the behavior of the money supply over a finite
horizon. Thus, Proposition 3 requires the central bank to act in the short run to implement
the Friedman rule in the short run.
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4. Stochastic regime changes

As a variation on the same theme, suppose now that instead of taking place at the end of
a finite horizon of fixed length, the regime change described above occurs randomly. More
specifically, suppose that at the beginning of each periodt = 1,2,3, . . . , all agents observe
a random signal that determines whether or not the first central banker’s term will end. With
probability 1− δ, the first central banker continues in office, and with probabilityδ, the
second central banker takes over during periodt . These assumptions allow the first central
banker to operate for sure during period 0; during each period that follows, however, there
is a constant probability of the regime change. And once the regime change does occur,
it cannot be reversed: the second central banker stays in office for the remainder of the
infinite horizon.

As before, suppose that once in office, the second central banker arbitrarily decides
to increase the money supply at the constant gross rateπ � 1, placing the economy in
its unique steady state. Thus,Mt+1/Mt = π andyt = mt = ȳ for all periods following
the regime change, wherēy again satisfiesV (ȳ)= π/β . Even for arbitrarily small values
of δ > 0, the stochastic process governing the timing of the regime change implies that
the first central banker’s term will be finite in length. The question remains: Can the first
central banker, through an appropriate choice of policy, still guarantee the existence of
an equilibrium in which allocations are efficient, withyt = y∗, for all periods before the
regime change?

To begin answering this question, note first that before the stochastic regime change, the
representative household must make its decisions under uncertainty. Among the conditions
that are both necessary and sufficient for a solution to the household’s optimization
problem, the intratemporal relationships (1), (2), and (5) remain as above. However, the
intertemporal conditions (3), (4), and (6) generalize under uncertainty to

λt

Pt
= βEt

(
λt+1 +µt+1

Pt+1

)
, (16)

λt

(1+ rt )Pt = βEt
(
λt+1

Pt+1

)
, (17)

and

lim
s→∞Et

(
βsλsMs+1

Ps

)
= 0, (18)

whereEt denotes the household’s rational expectation based on information available
during periodt . Each of these conditions must hold for allt = 0,1,2, . . . .

Some additional notation will now prove useful. For allt = 0,1,2, . . . , let y1
t , λ

1
t ,

µ1
t , r

1
t , P 1

t , andM1
t denote the values ofyt , λt , µt , rt , Pt , andMt that will prevail in

equilibrium if the first central banker remains in power during periodt . Similarly, for all
t = 1,2,3, . . . , let y2

t , λ
2
t , µ

2
t , r

2
t , P 2

t , andM2
t denote the values that will prevail if the

second central banker takes charge before or during periodt . Since the economy reverts to
its steady state after the regime change,y2

t = ȳ, λ2
t = U2(ȳ,1− ȳ)= (β/π)U1(ȳ,1 − ȳ),

µ2
t = U1(ȳ,1 − ȳ) − U2(ȳ,1 − ȳ) = (1 − β/π)U1(ȳ,1 − ȳ) > 0, r2

t = V (ȳ) − 1,
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P 2
t =M2

t /ȳ, andM2
t+1/M

2
t = π � 1 for all t = 1,2,3, . . . . These values satisfy (1), (2),

(5), and (16)–(18), as required, for all periods after the regime change.
For all periods before the regime change, (1), (2), (5), and (16)–(18) require thaty1

t , λ
1
t ,

µ1
t , r

1
t , P 1

t , andM1
t satisfy

U1
(
y1
t ,1− y1

t

) = λ1
t +µ1

t , (19)

U2
(
y1
t ,1− y1

t

) = λ1
t , (20)

λ1
t

P 1
t

= β(1− δ)
(
λ1
t+1 +µ1

t+1

P 1
t+1

)
+ βδ

[
U1(ȳ,1− ȳ)ȳ

M1
t+1

]
, (21)

λ1
t

(1+ r1
t )P

1
t

= β(1− δ)
(
λ1
t+1

P 1
t+1

)
+ βδ

(
β

π

)[
U1(ȳ,1− ȳ)ȳ

M1
t+1

]
, (22)

µ1
t � 0,

M1
t

P 1
t

� y1
t , µ1

t

(
M1
t

P 1
t

− y1
t

)
= 0, (23)

and

lim
t→∞

[β(1− δ)]t λ1
t M

1
t+1

P 1
t

= 0. (24)

In deriving (21) and (22) from (16) and (17), use has been made of the fact that if the
regime change occurs during periodt + 1, the beginning-of-period money supplyMt+1
has still been determined by the past actions of the first central bank, so thatM2

t+1 =M1
t+1.

In terms of this new notation, the first central banker takes the initial conditionM1
0 =M0

as given and chooses an entire infinite sequence{M1
t+1}∞t=0, indicating how much money he

or she plans to supply contingent on remaining in office during each periodt = 0,1,2, . . . .
Of course, this infinite-horizon plan gets implemented only during periods before the
stochastic regime change; however, the announcement of the entire sequence{M1

t+1}∞t=0
serves to pin down the representative household’s expectations of what will happen so
long as the first central banker remains in office. The key question from above can now
be stated more precisely as: Can the first central banker, through an appropriate choice
of {M1

t+1}∞t=0, guarantee the existence of a solution to (19)–(24) that hasy1
t = y∗ for all

t = 0,1,2, . . .? The next result answers this question in the affirmative.

Proposition 4. Suppose that at the beginning of each period t = 0,1,2, . . . , there is a
constant probability δ > 0 that a new central banker will set Mt+j+1/Mt+j = π � 1 for
all j = 0,1,2, . . . and that following this stochastic regime change, the economy reverts to
its unique steady state, with yt+j =mt+j = ȳ for all j = 0,1,2, . . . . Then an equilibrium
with yt = y1

t = y∗ for all periods before the regime change exists if the sequence {M1
t+1}∞t=0

chosen by the first central banker satisfies

M1
t+1> 0, (25)

for all t = 0,1,2, . . . ,

lim
t→∞

t−1∑
s=0

[
β(1− δ)]s( 1

M1
s+1

)
<∞, (26)
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and

lim
t→∞M

1
t+1 = 0. (27)

Proof. Suppose that (25)–(27) are satisfied, and sety1
t = y∗, λ1

t = U1(y
∗,1 − y∗) =

U2(y
∗,1− y∗), andµ1

t = 0 for all t = 0,1,2, . . . . For t = 1,2,3, . . . , setP 1
t so that

1

P 1
t

= [
β(1− δ)]−t

{
1

P 1
0

− βδ
[
U1(ȳ,1− ȳ)ȳ
U1(y∗,1− y∗)

] t−1∑
s=0

[
β(1− δ)]s( 1

M1
s+1

)}
,

whereP 1
0 satisfying

1

P 1
0

> βδ

[
U1(ȳ,1− ȳ)ȳ
U1(y∗,1− y∗)

] ∞∑
s=0

[
β(1− δ)]s( 1

M1
s+1

)

is chosen below. Condition (26), coupled with the fact that the sequence{Xt }∞t=1 defined
by

Xt =
t−1∑
s=0

[
β(1− δ)]s( 1

M1
s+1

)

for all t = 0,1,2, . . . is strictly increasing, guarantees thatP 1
t > 0 for all t = 0,1,2, . . . , as

required for the existence of this equilibrium. Finally, set

r1
t =

βδ
(π−β
π

)[U1(ȳ,1−ȳ)ȳ
M1
t+1

]
β(1− δ)

[
U1(y

∗,1−y∗)
P 1
t+1

]
+ βδ( β

π

)[U1(ȳ,1−ȳ)ȳ
M1
t+1

] > 0 for all t = 0,1,2, . . . .

Clearly, these values satisfy (19)–(22) for allt = 0,1,2, . . . . Sinceµ1
t = 0, (23) requires

that

[
β(1− δ)]−tM1

t

{
1

P 1
0

− βδ
[
U1(ȳ,1− ȳ)ȳ
U1(y∗,1− y∗)

] t−1∑
s=0

[
β(1− δ)]s( 1

M1
s+1

)}
� y∗

for all t = 1,2,3, . . . . But (26) implies that

lim
t→∞

[β(1− δ)]t−1

M1
t

= 0,

and together with (25), this last condition guarantees the existence of anε > 0 such that
[β(1 − δ)]−tMt � ε for all t = 0,1,2, . . . . For t = 1,2,3, . . . , therefore, (23) is satisfied
for any choice ofP 1

0 such that

1

P 1
0

� y∗

ε
+ βδ

[
U1(ȳ,1− ȳ)ȳ
U1(y∗,1− y∗)

] ∞∑
s=0

[
β(1− δ)]s( 1

M1
s+1

)
.

For t = 0, (23) requires that

M1
0

P 1
0

� y∗,
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but sinceM1
0 � ε, this condition holds as well. Finally, (26) and (27) guarantee that (24)

will hold. Thus, as stated in the proposition, (25)–(27) are sufficient conditions for the
existence of an equilibrium withyt = y1

t = y∗ for all periods before the stochastic regime
change. ✷

Condition (25) simply guarantees that money is always in positive supply. Condi-
tions (26) and (27), meanwhile, bear a close resemblance to (7) and (8) from Proposition 1.
Like (7), (26) places a lower bound on the asymptotic money growth rate: it requires that
the money supply eventually grow at a rate that exceeds the probability-adjusted discount
factorβ(1− δ), ruling out policies under which the money supply contracts at so fast a rate
that the representative household’s demand for real balances becomes infinite. And like (8),
(27) places an upper bound on the asymptotic money growth rate: once again, efficiency
requires that the money supply eventually contract. Together, therefore, (26) and (27) only
require the first central banker to promise that should he or she remain in office, the money
supply will eventually contract at a rate that is no faster than the representative household’s
probability-adjusted discount rate[β(1− δ)]−1 − 1.

Suppose, in particular, that the first central banker chooses a policy{M1
t+1}∞t=0 such that

M1
t+1 = γM1

t for all t = 0,1, . . . , T − 1 andM1
t+1 = ωM1

t for t = T ,T + 1, T + 2, . . . ,
with γ > 1, β(1 − δ) < ω < 1, andT <∞. Policies from this class, which call for the
money supply to grow at a constant rate for the firstT periods before contracting at a
rate that is slower than the probability-adjusted discount rate thereafter, satisfy (25)–(27).
By adopting one of these policies, therefore, the first central banker can guarantee the
existence of an equilibrium in which allocations are Pareto optimal for all periods before
the stochastic regime change. And if, after announcing a policy of this type, the first central
banker loses power before the arrival of periodT , the promised monetary contraction will
never actually be observed! Strikingly, in this case, expectations of what the first central
banker will do so long as he or she remains in office are by themselves sufficient to
implement optimal allocations.

Surprisingly, therefore, the assumption that the regime change occurs randomly in any
period, instead of for certain in a fixed period, actually weakens the constraints placed
on a central banker who wishes to implement optimal allocations in the short run. The
conditions imposed by Proposition 4, like those imposed by the original Proposition 1,
serve mainly to restrict the long-run behavior of the money supply.

5. Conclusions

Wilson (1979) and Cole and Kocherlakota (1998) show that in cash-in-advance models,
necessary and sufficient conditions for the existence of an equilibrium with zero nominal
interest rates and Pareto optimal allocations place restrictions mainly on the asymptotic
behavior of the money supply. For a central banker who wishes to implement the Friedman
(1969) rule, these results are unambiguously positive. So long as the asymptotic conditions
are guaranteed to hold, tremendous flexibility remains in how the money stock is managed
over any finite horizon.
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But what happens when these asymptotic conditions fail to hold? The two examples
studied here indicate that the central bank can still find policies that implement optimal
allocations, at least in the short run. In the first example, the asymptotic conditions fail
to hold because the central banker remains in office for a fixed term of finite length.
Nevertheless, by acting appropriately over his or her finite horizon, the central banker can
still implement the Friedman rule. And in the second example, where the central banker’s
term ends in a randomly-determined period, the optimality conditions become even easier
to satisfy. There, the central banker’s leverage over expectations of what will happen in
the distant future, so long as he or she remains in office, helps support optimal allocations
even without direct action in the short run. These results, too, provide unambiguously good
news for central bankers who wish to implement the Friedman rule.
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