ECON 772001 MATH FOR ECONOMISTS

Peter Ireland

Boston College

September 17, 2020

To generalize our proof of the Kuhn-Tucker theorem, we will make repeated use of the implicit function theorem.

For details, see

Simon and Blume, Chapter 15

Acemoglu, Appendix A

The version we will need is not as general.

Consider a system of n equations involving n variables y_1, y_2, \ldots, y_n and n parameters c_1, c_2, \ldots, c_n :

$$H_1(y_1, y_2, \dots, y_n) = c_1$$

 $H_2(y_1, y_2, \dots, y_n) = c_2$
 \vdots
 $H_n(y_1, y_2, \dots, y_n) = c_n$

Note: there can be more than n parameters, and each parameter can enter more than one equation, nonlinearly. But there must be at least n variables.

Suppose that for a given set of parameters $c_1^*, c_2^*, \dots, c_n^*$, all of the equations are satisfied at $y_1^*, y_2^*, \dots, y_n^*$:

$$H_1(y_1^*, y_2^*, \dots, y_n^*) = c_1^*$$

 $H_2(y_1^*, y_2^*, \dots, y_n^*) = c_2^*$
 \vdots
 $H_n(y_1^*, y_2^*, \dots, y_n^*) = c_n^*$

The question is: under what conditions will the y's vary smoothly with the c's?

Assume (a) that each H_j , j = 1, 2, ..., n is continuously differentiable and that the matrix

$$\begin{bmatrix} \partial H_1/\partial y_1 & \partial H_1/\partial y_2 & \dots & \partial H_1/\partial y_n \\ \partial H_2/\partial y_1 & \partial H_2/\partial y_2 & \dots & \partial H_2/\partial y_n \\ \vdots & \vdots & & \vdots \\ \partial H_n/\partial y_1 & \partial H_n/\partial y_2 & \dots & \partial H_n/\partial y_n \end{bmatrix}$$

is nonsingular at $y_1^*, y_2^*, \dots, y_n^*$.

Then there exist continuously differentiable functions $y_1(c_1, c_2, \ldots, c_n), y_2(c_1, c_2, \ldots, c_n), \ldots, y_n(c_1, c_2, \ldots, c_n),$ defined on an open set $C \subseteq \mathbb{R}^n$ containing $c_1^*, c_2^*, \ldots, c_n^*$, such that

$$H_1(y_1(c_1, c_2, \dots, c_n), \dots, y_n(c_1, c_2, \dots, c_n)) = c_1$$

 $H_2(y_1(c_1, c_2, \dots, c_n), \dots, y_n(c_1, c_2, \dots, c_n)) = c_2$
 \vdots
 $H_n(y_1(c_1, c_2, \dots, c_n), \dots, y_n(c_1, c_2, \dots, c_n)) = c_n$

for all $(c_1, c_2, ..., c_n) \in C$.

With this result in mind, let's generalize our previous problem to include n choice variables and m constraints, where n and m are arbitrarily large but finite:

choice variables
$$x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$$
 objective function $F(x)=F(x_1,x_2,\ldots,x_n)$
$$F:\mathbb{R}^n\to\mathbb{R} \text{ continuously differentiable}$$
 constraints $c_j\geq G_j(x)=G(x_1,x_2,\ldots,x_n),\,j=1,2,\ldots,m$ $c_j\in\mathbb{R},\,G_j:\mathbb{R}^n\to\mathbb{R} \text{ continuously differentiable}$

Typically, $m \le n$, or at least $\bar{m} \le n$, where \bar{m} is the number of binding constraints.

The problem:

$$\max_{x_1,x_2,\dots,x_n} F(x_1,x_2,\dots,x_n)$$
 subject to $c_j \geq G(x_1,x_2,\dots,x_n)$ for all $j=1,2,\dots,m$

The Lagrangian:

$$L(x_1,...,x_n,\lambda_1,...,\lambda_m) = F(x_1,x_2,...,x_n) + \sum_{j=1}^m \lambda_j [c_j - G_j(x_1,x_2,...,x_n)]$$

Theorem (Kuhn-Tucker) Let $x^* = (x_1^*, \ldots, x_n^*)$ maximize F(x) subject to $c_j \geq G_j(x)$ for all $j = 1, 2, \ldots, m$, where F and G_j , $j = 1, 2, \ldots, m$, are all continuously differentiable. Suppose, without loss of generality, that the first \bar{m} constraints, $0 \leq \bar{m} \leq m$, bind at the optimum, while the remaining $m - \bar{m}$ constraints are nonbinding. Suppose, as well, that the matrix

$$\begin{bmatrix} G_{11}(x^*) & G_{12}(x^*) & \dots & G_{1n}(x^*) \\ G_{21}(x^*) & G_{22}(x^*) & \dots & G_{2n}(x^*) \\ \vdots & \vdots & \dots & \vdots \\ G_{\bar{m}1}(x^*) & G_{\bar{m}2}(x^*) & \dots & G_{\bar{m}n}(x^*) \end{bmatrix}$$
(12)

where $G_{ii}(x^*) = \partial G_i(x^*)/\partial x_i$, has maximal rank \bar{m} .

Then there exist values $\lambda_1^*, \lambda_2^*, \dots, \lambda_m^*$ that, together with x_1^*, \dots, x_n^* , satisfy the first-order conditions

$$L_{i}(x_{1}^{*},...,x_{n}^{*},\lambda_{1}^{*},...,\lambda_{m}^{*}) = F_{i}(x_{1}^{*},...,x_{n}^{*}) - \sum_{i=1}^{m} \lambda_{j}^{*} G_{ji}(x_{1}^{*},...,x_{n}^{*}) = 0^{(13)}$$

for all i = 1, 2, ..., n

the constraints

$$L_{n+j}(x_1^*,\ldots,x_n^*,\lambda_1^*,\ldots,\lambda_m^*)=c_j-G_j(x_1^*,\ldots,x_n^*)\geq 0$$
 (14)

for all j = 1, 2, ..., m, the nonnegativity conditions

$$\lambda_j^* \ge 0 \tag{15}$$

for all j = 1, 2, ..., m, and the complementary slackness conditions

$$\lambda_j^*[c_j - G_j(x_1^*, \dots, x_n^*)] = 0$$
 (16)

for all j = 1, 2, ..., m