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Generalizing the Results

To generalize our proof of the Kuhn-Tucker theorem, we will
make repeated use of the implicit function theorem.

For details, see

Simon and Blume, Chapter 15

Acemoglu, Appendix A

The version we will need is not as general.



Generalizing the Results

Consider a system of n equations involving n variables
y1, y2, . . . , yn and n parameters c1, c2, . . . , cn:

H1(y1, y2, . . . , yn) = c1

H2(y1, y2, . . . , yn) = c2

...

Hn(y1, y2, . . . , yn) = cn

Note: there can be more than n parameters, and each
parameter can enter more than one equation, nonlinearly. But
there must be at least n variables.



Generalizing the Results

Suppose that for a given set of parameters c∗1 , c
∗
2 , . . . , c

∗
n , all of

the equations are satisfied at y ∗
1 , y

∗
2 , . . . , y

∗
n :

H1(y ∗
1 , y

∗
2 , . . . , y

∗
n ) = c∗1

H2(y ∗
1 , y

∗
2 , . . . , y

∗
n ) = c∗2

...

Hn(y ∗
1 , y

∗
2 , . . . , y

∗
n ) = c∗n

The question is: under what conditions will the y ’s vary
smoothly with the c ’s?



Generalizing the Results

Assume (a) that each Hj , j = 1, 2, . . . , n is continuously
differentiable and that the matrix

∂H1/∂y1 ∂H1/∂y2 . . . ∂H1/∂yn
∂H2/∂y1 ∂H2/∂y2 . . . ∂H2/∂yn

...
... . . .

...
∂Hn/∂y1 ∂Hn/∂y2 . . . ∂Hn/∂yn


is nonsingular at y ∗

1 , y
∗
2 , . . . , y

∗
n .



Generalizing the Results

Then there exist continuously differentiable functions
y1(c1, c2, . . . , cn), y2(c1, c2, . . . , cn), . . . , yn(c1, c2, . . . , cn),
defined on an open set C ⊆ Rn containing c∗1 , c

∗
2 , . . . , c

∗
n , such

that

H1(y1(c1, c2, . . . , cn), . . . , yn(c1, c2, . . . , cn)) = c1

H2(y1(c1, c2, . . . , cn), . . . , yn(c1, c2, . . . , cn)) = c2

...

Hn(y1(c1, c2, . . . , cn), . . . , yn(c1, c2, . . . , cn)) = cn

for all (c1, c2, . . . , cn) ∈ C .



Generalizing the Results
With this result in mind, let’s generalize our previous problem
to include n choice variables and m constraints, where n and
m are arbitrarily large but finite:

choice variables x = (x1, x2, . . . , xn) ∈ Rn

objective function F (x) = F (x1, x2, . . . , xn)

F : Rn → R continuously differentiable

constraints cj ≥ Gj(x) = G (x1, x2, . . . , xn), j = 1, 2, . . . ,m

cj ∈ R, Gj : Rn → R continuously differentiable

Typically, m ≤ n, or at least m̄ ≤ n, where m̄ is the number of
binding constraints.



Generalizing the Results

The problem:

max
x1,x2,...,xn

F (x1, x2, . . . , xn) subject to

cj ≥ G (x1, x2, . . . , xn) for all j = 1, 2, . . . ,m

The Lagrangian:

L(x1, . . . , xn, λ1, . . . , λm) = F (x1, x2, . . . , xn)

+
m∑
j=1

λj [cj − Gj(x1, x2, . . . , xn)]



Generalizing the Results

Theorem (Kuhn-Tucker) Let x∗ = (x∗1 , . . . , x
∗
n ) maximize F (x)

subject to cj ≥ Gj(x) for all j = 1, 2, . . . ,m, where F and Gj ,
j = 1, 2, . . . ,m, are all continuously differentiable. Suppose,
without loss of generality, that the first m̄ constraints,
0 ≤ m̄ ≤ m, bind at the optimum, while the remaining m − m̄
constraints are nonbinding. Suppose, as well, that the matrix

G11(x∗) G12(x∗) . . . G1n(x∗)
G21(x∗) G22(x∗) . . . G2n(x∗)

...
... . . .

...
Gm̄1(x∗) Gm̄2(x∗) . . . Gm̄n(x∗)

 (12)

where Gji(x
∗) = ∂Gj(x

∗)/∂xi , has maximal rank m̄.



Generalizing the Results

Then there exist values λ∗1, λ
∗
2, . . . , λ

∗
m that, together with

x∗1 , . . . , x
∗
n , satisfy the first-order conditions

Li(x
∗
1 , . . . , x

∗
n , λ

∗
1, . . . , λ

∗
m) = Fi(x

∗
1 , . . . , x

∗
n )

−
m∑
j=1

λ∗j Gji(x
∗
1 , . . . , x

∗
n ) = 0

(13)

for all i = 1, 2, . . . , n



Generalizing the Results

the constraints

Ln+j(x
∗
1 , . . . , x

∗
n , λ

∗
1, . . . , λ

∗
m) = cj − Gj(x

∗
1 , . . . , x

∗
n ) ≥ 0 (14)

for all j = 1, 2, . . . ,m, the nonnegativity conditions

λ∗j ≥ 0 (15)

for all j = 1, 2, . . . ,m, and the complementary slackness
conditions

λ∗j [cj − Gj(x
∗
1 , . . . , x

∗
n )] = 0 (16)

for all j = 1, 2, . . . ,m


