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Generalizing the Results

To generalize our proof of the Kuhn-Tucker theorem, we will
make repeated use of the implicit function theorem.

For details, see
Simon and Blume, Chapter 15

Acemoglu, Appendix A

The version we will need is not as general.



Generalizing the Results

Consider a system of n equations involving n variables
Y1, Y2, .., Yn and n parameters ¢, G, ..., Cy:

Hl(_yla.y27 s 7_yn) =G
H2(.y17y27‘ e ;_yn) =G

Hn(_y1>.y27 < 7yn) = Cn

Note: there can be more than n parameters, and each
parameter can enter more than one equation, nonlinearly. But
there must be at least n variables.



Generalizing the Results

Suppose that for a given set of parameters c¢;, c;, ..., c;, all of
the equations are satisfied at y;',y5, ..., y::

Hi(y!,y5, - yn)=¢f

H2()/fa)’2*77)/:) = C2

*

Ho(ys,y5, -, ¥n) = cn

The question is: under what conditions will the y's vary
smoothly with the ¢'s?



Generalizing the Results

Assume (a) that each H;, j =1,2,...,nis continuously
differentiable and that the matrix

5’H1/8y1 8H1/8y2 8H1/8y,,
8H2/8y1 8H2/6y2 8H2/(3y,,

OH,/0y1 OH,/Dy> ... OH,/Oy,

is nonsingular at y;', v5, ...,y



Generalizing the Results

Then there exist continuously differentiable functions

.yl(Cla €2y Cn)a_yZ(Cla €y Cn)a v 7_yn(C1a €2y Cn)v
defined on an open set C C R" containing cf, ¢, ..., c;, such
that

Hi(yi(cr, oy vosCn)y ey ynlcr, e, .. h6)) = @

Hz(y]_(C]_, Coynny Cn), e ,yn(C]_, C, ..., Cn)) = O

Ho(»a(c1, e, -5 6n)s -5 yn(cr, 2,05 6n)) = Cn

for all (c1,¢,...,¢,) € C.



Generalizing the Results

With this result in mind, let's generalize our previous problem
to include n choice variables and m constraints, where n and
m are arbitrarily large but finite:

choice variables x = (xy, x2, ..., x,) € R"

objective function F(x) = F(x1, %2, ..., Xs)
F : R" — R continuously differentiable

constraints ¢; > Gj(x) = G(x1,X2,...,X,), j=1,2,...,m
¢ € R, Gj: R" — R continuously differentiable

Typically, m < n, or at least m < n, where m is the number of
binding constraints.



Generalizing the Results

The problem:

max F(x1,%,...,X,) subject to
X1,X25+++3Xn

¢ > G(x1,x,...,%,) forall j=1,2,...,

The Lagrangian:

L(X1, oy Xy ALy ooy Am) = F(x1, X2, ..o, Xp)

m

+ Z)\j[Cj — Gj(Xl,XZ7 R

j=1

m

, Xn)]



Generalizing the Results

Theorem (Kuhn-Tucker) Let x* = (x7,...,x}) maximize F(x)
subject to ¢; > Gj(x) for all j=1,2,..., m, where F and G,
Jj=1,2,...,m, are all continuously differentiable. Suppose,
without loss of generality, that the first m constraints,

0 < m < m, bind at the optimum, while the remaining m — m

constraints are nonbinding. Suppose, as well, that the matrix

Gll(X*) G12(X*) RN Gl,,(X*)
Ggl(X*) G22(X*) RN Gzn(X*) (12)
Gt (x*) Gra(x*) .. Gn(x*)

where Gji(x*) = 0Gj(x*)/0x;, has maximal rank m.



Generalizing the Results

Then there exist values A7, A3, ..., A% that, together with
Xy, ..., x;, satisfy the first-order cond|t|ons

bl n 1

Li(xy, .. .x5 A ...,)\fn):F-(xf,...,x*)

Y 1 n

_Z)\* i * o *)20(13)

forall i=1,2,....n



Generalizing the Results

the constraints

Lotj(X{s oy xm, AL, oo An) =6 — Gi(x{,...,x;) >0 (14)

for all j =1,2,..., m, the nonnegativity conditions
A >0 (15)
forall j =1,2 ..., m, and the complementary slackness
conditions
XG — GO x)] =0 (16)

forallj=1,2,...,m



