ECON 772001 MATH FOR ECONOMISTS

Peter Ireland

Boston College

September 8, 2020

References:

Dixit, Chapter 5

Simon and Blume, Chapter 19

Acemoglu, Appendix A

Shephard's Lemma, Hotelling's Lemma, Roy's Identity, and Le Chatelier's Principle are all applications of the Envelope Theorem

Paul Samuelson. Foundations of Economic Analysis (1947).

Now extend the constrained optimization problem by introducing a parameter θ :

$$\max_{x} F(x, \theta)$$
 subject to $c \geq G(x, \theta)$

Define the maximum value function

$$V(\theta) = \max_{x} F(x, \theta)$$
 subject to $c \geq G(x, \theta)$

Define the maximum value function

$$V(\theta) = \max_{x} F(x, \theta)$$
 subject to $c \geq G(x, \theta)$

Evaluating $V(\theta)$ requires two steps:

- 1) Given θ , find x^*
- 2) Evaluate $V(\theta) = F(x^*, \theta)$

Given θ , find x^* : by the Kuhn-Tucker theorem:

$$\lambda^*[c - G(x^*, \theta)] = 0$$

Therefore

$$V(\theta) = F(x^*, \theta)$$

= $F(x^*, \theta) + \lambda^* [c - G(x^*, \theta)]$

$$V(\theta) = F(x^*, \theta) + \lambda^*[c - G(x^*, \theta)]$$

Because this expression holds for all θ , differentiate both sides with respect to θ to get

$$V'(\theta) = F_2(x^*, \theta) - \lambda^* G_2(x^*, \theta)$$

The envelope theorem confirms that this result is true even though, in deriving it here, we've ignored the important fact that x^* and λ^* depend on θ .

Theorem (Envelope) Let F and G be continuously differentiable functions of x and θ . For any given θ , let $x^*(\theta)$ maximize $F(x,\theta)$ subject to $c \geq G(x,\theta)$, and the $\lambda^*(\theta)$ be the corresponding value of the Lagrange multiplier. For all θ , assume that the constraint qualification $G_1[x^*(\theta),\theta] \neq 0$ holds. Assume, as well, that both $x^*(\theta)$ and $\lambda^*(\theta)$ are continuously differentiable functions. Then the maximum value function defined by

$$V(\theta) = \max_{x} F(x, \theta)$$
 subject to $c \geq G(x, \theta)$

satisfies

$$V'(\theta) = F_2[x^*(\theta), \theta] - \lambda^*(\theta)G_2[x^*(\theta), \theta]. \tag{7}$$