Solutions to Midterm Exam

ECON 772001 - Math for Economists
Boston College, Department of Economics

Due Tuesday, November 2

1. Utility Maximization

The consumer solves

min aln(cg) + (1 — a)In(co) subject to Y > prcp + poco.
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The Lagrangian for this problem can be written as
L(cr,co,A) = aln(cr) + (1 — a)In(co) + A(Y — prer — poco).

The first-order conditions for ¢} and cf, are
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Substituting these last expressions into the binding constraint
Y = prcr + poco

provides the solution
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2. Expenditure Minimization

The consumer solves
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min paca + pgcp subject to (CA9 +c5’ ) > cr.
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a. Letting A denote the nonnegative multiplier on the constraint, the Lagrangian for this
problem can be defined as

L(ca,cp,\) = paca + ppcg — A
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b. With the Lagrangian defined as above, the Kuhn-Tucker theorem implies that the
values c% and cj; that solve the problem, together with the associated value \* of the
Lagrange multiplier, must satisfy the first-order conditions
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the first-order conditions form a system of three equations in the three unknowns c%,
¢y, and \*. Although there are many ways of solving this system, perhaps the easiest
is to start by dividing the first-order condition for c4 by the first-order condition for

cp to obtain
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and then substitute this expression for cj into the binding constraint to obtain the
solution ,
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Substituting this solution for c% back into the previous expression for cj; then yields

the solution ,
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Although this approach allows us to find ¢’ and cj; without having to solve for A\*, for
future reference it is helpful to note that, by substituting these solutions into either of
the two first-order conditions, one can find
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d. With the minimum expenditure function defined as
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E(cp,pa,pp) = min paca + ppcp subject to (CA" +c5 ) > cp,
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it is possible to find the partial derivative of E with respect to cp in either of two ways.

The first is to use the solutions for ¢ and cj to find
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E(cp,pa,ps) = pach + ppcy = cp (P +p5 %) 7,
then differentiate to obtain
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The second is to use the envelope theorem and the solution for A* to obtain
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Since this partial derivative can be interpreted as the marginal cost of producing the
quantity aggregate, it suggests defining the price aggregate for food as
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3. More Detailed Utility Maximization

The consumer solves
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max (a_) In (cAe +c5 ) + (1 — a)In(cp) subject to Y > paca + pres + poco.
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a. Letting A denote the nonnegative multiplier on the constraint, the Lagrangian for this
problem can be defined as
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L(ca,cp,co, A) = (m
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b. With the Lagrangian defined as above, the Kuhn-Tucker theorem implies that the
values ¢, ¢, and ¢, that solve this problem, together with the associated value \* of
the Lagrange multiplier, must satisfy the first-order conditions
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c. Together with the binding constraint

Y = poco + pacy + ppcg,

the first-order conditions for a system of four equations in the four unknowns c, cj,
ch, and A*. As a first step in solving this system, multiply the first-order condition for
ca by ¢, the first-order condition for cp by ¢}, and the first-order condition for co
by cf). Then, after dividing each first-order condition by A*, substituting them all into
the binding budget constraint provides the solutions
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just as in question 1.

d. Next, divide the first-order condition for ¢4 by the first-order condition for cg to obtain
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Substituting this expression for % back into the previous expression for c¢j; then yields
Pp

Both of these solutions coincide with those from question 2, with ¢}, in place of cp.

e. It only remains to find cj. This can be done by substituting the expressions for \*,
c’, and cj back into the first-order condition for c4 to obtain
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which coincides with the solution to question 1 if we define the price aggregate for food
as
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