## Solutions to Midterm Exam

ECON 772001 - Math for Economists Boston College, Department of Economics Peter Ireland Fall 2021

Due Tuesday, November 2

## 1. Utility Maximization

The consumer solves

$$\min_{c_F, c_O} \alpha \ln(c_F) + (1 - \alpha) \ln(c_O) \text{ subject to } Y \ge p_F c_F + p_0 c_0.$$

The Lagrangian for this problem can be written as

$$L(c_F, c_O, \lambda) = \alpha \ln(c_F) + (1 - \alpha) \ln(c_O) + \lambda (Y - p_F c_F - p_0 c_0).$$

The first-order conditions for  $c_F^*$  and  $c_O^*$  are

$$\frac{\alpha}{c_F^*} - \lambda^* p_F = 0$$

and

$$\frac{1-\alpha}{c_O^*} - \lambda^* p_O = 0,$$

and can be rearranged to read

$$c_F^* = \frac{\alpha}{\lambda^* p_F}$$

and

$$c_O^* = \frac{1 - \alpha}{\lambda^* p_O}.$$

Substituting these last expressions into the binding constraint

$$Y = p_F c_F^* + p_O c_O^*$$

provides the solution

$$\lambda^* = \frac{1}{Y},$$

which can then be substituted back into the previous expressions to obtain

$$c_F^* = \frac{\alpha Y}{p_F}$$

and

$$c_O^* = \frac{(1-\alpha)Y}{p_O}.$$

## 2. Expenditure Minimization

The consumer solves

$$\min_{c_A,c_B} \ p_A c_A + p_B c_B \text{ subject to } \left( c_A^{\frac{\theta-1}{\theta}} + c_B^{\frac{\theta-1}{\theta}} \right)^{\frac{\theta}{\theta-1}} \ge c_F.$$

a. Letting  $\lambda$  denote the nonnegative multiplier on the constraint, the Lagrangian for this problem can be defined as

$$L(c_A, c_B, \lambda) = p_A c_A + p_B c_B - \lambda \left[ \left( c_A^{\frac{\theta - 1}{\theta}} + c_B^{\frac{\theta - 1}{\theta}} \right)^{\frac{\theta}{\theta - 1}} - c_F \right]$$

b. With the Lagrangian defined as above, the Kuhn-Tucker theorem implies that the values  $c_A^*$  and  $c_B^*$  that solve the problem, together with the associated value  $\lambda^*$  of the Lagrange multiplier, must satisfy the first-order conditions

$$p_A - \lambda^* \left( c_A^{*\frac{\theta - 1}{\theta}} + c_B^{*\frac{\theta - 1}{\theta}} \right)^{\frac{1}{\theta - 1}} c_A^{*-\frac{1}{\theta}} = 0$$

and

$$p_B - \lambda^* \left( c_A^{*\frac{\theta - 1}{\theta}} + c_B^{*\frac{\theta - 1}{\theta}} \right)^{\frac{1}{\theta - 1}} c_B^{*-\frac{1}{\theta}} = 0$$

c. Together with the binding constraint

$$c_F = \left(c_A^{*\frac{\theta-1}{\theta}} + c_B^{*\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}},$$

the first-order conditions form a system of three equations in the three unknowns  $c_A^*$ ,  $c_B^*$ , and  $\lambda^*$ . Although there are many ways of solving this system, perhaps the easiest is to start by dividing the first-order condition for  $c_A$  by the first-order condition for  $c_B$  to obtain

$$\frac{p_A}{p_B} = \left(\frac{c_B^*}{c_A^*}\right)^{\frac{1}{\theta}}$$

or

$$c_B^* = \left(\frac{p_A}{p_B}\right)^\theta c_A^*,$$

and then substitute this expression for  $c_B^*$  into the binding constraint to obtain the solution

$$c_A^* = c_F \left( \frac{p_A^{1-\theta} + p_B^{1-\theta}}{p_A^{1-\theta}} \right)^{\frac{\theta}{1-\theta}}$$

Substituting this solution for  $c_A^*$  back into the previous expression for  $c_B^*$  then yields the solution

$$c_B^* = c_F \left( \frac{p_A^{1-\theta} + p_B^{1-\theta}}{p_B^{1-\theta}} \right)^{\frac{\theta}{1-\theta}}.$$

Although this approach allows us to find  $c_A^*$  and  $c_B^*$  without having to solve for  $\lambda^*$ , for future reference it is helpful to note that, by substituting these solutions into either of the two first-order conditions, one can find

$$\lambda^* = \left(p_A^{1-\theta} + p_B^{1-\theta}\right)^{\frac{1}{1-\theta}}.$$

d. With the minimum expenditure function defined as

$$E(c_F, p_A, p_B) = \min_{c_A, c_B} p_A c_A + p_B c_B \text{ subject to } \left( c_A^{\frac{\theta - 1}{\theta}} + c_B^{\frac{\theta - 1}{\theta}} \right)^{\frac{\theta}{\theta - 1}} \ge c_F,$$

it is possible to find the partial derivative of E with respect to  $c_F$  in either of two ways. The first is to use the solutions for  $c_A^*$  and  $c_B^*$  to find

$$E(c_F, p_A, p_B) = p_A c_A^* + p_B c_B^* = c_F \left( p_A^{1-\theta} + p_B^{1-\theta} \right)^{\frac{1}{1-\theta}},$$

then differentiate to obtain

$$\frac{\partial E(c_F, p_A, p_B)}{\partial c_F} = \left(p_A^{1-\theta} + p_B^{1-\theta}\right)^{\frac{1}{1-\theta}}.$$

The second is to use the envelope theorem and the solution for  $\lambda^*$  to obtain

$$\frac{\partial E(c_F, p_A, p_B)}{\partial c_F} = \lambda^* = \left(p_A^{1-\theta} + p_B^{1-\theta}\right)^{\frac{1}{1-\theta}}.$$

Since this partial derivative can be interpreted as the marginal cost of producing the quantity aggregate, it suggests defining the price aggregate for food as

$$p_F = (p_A^{1-\theta} + p_B^{1-\theta})^{\frac{1}{1-\theta}}.$$

## 3. More Detailed Utility Maximization

The consumer solves

$$\max_{c_A, c_B, c_O} \left( \frac{\alpha \theta}{\theta - 1} \right) \ln \left( c_A^{\frac{\theta - 1}{\theta}} + c_B^{\frac{\theta - 1}{\theta}} \right) + (1 - \alpha) \ln(c_O) \text{ subject to } Y \ge p_A c_A + p_B c_B + p_O c_O.$$

a. Letting  $\lambda$  denote the nonnegative multiplier on the constraint, the Lagrangian for this problem can be defined as

$$L(c_A, c_B, c_O, \lambda) = \left(\frac{\alpha \theta}{\theta - 1}\right) \ln \left(c_A^{\frac{\theta - 1}{\theta}} + c_B^{\frac{\theta - 1}{\theta}}\right) + (1 - \alpha) \ln(c_O) + \lambda (Y - p_A c_A - p_B c_B - p_O c_O).$$

b. With the Lagrangian defined as above, the Kuhn-Tucker theorem implies that the values  $c_A^*$ ,  $c_B^*$ , and  $c_O^*$  that solve this problem, together with the associated value  $\lambda^*$  of the Lagrange multiplier, must satisfy the first-order conditions

$$\frac{\alpha c_A^{*-\frac{1}{\theta}}}{c_A^{\frac{\theta-1}{\theta}} + c_B^{\frac{\theta-1}{\theta}}} - \lambda^* p_A = 0,$$

$$\frac{\alpha c_B^{*-\frac{1}{\theta}}}{c_A^{\frac{\theta-1}{\theta}} + c_B^{\frac{\theta-1}{\theta}}} - \lambda^* p_B = 0,$$

and

$$\frac{1-\alpha}{c_O^*} - \lambda^* p_O = 0.$$

c. Together with the binding constraint

$$Y = p_0 c_O^* + p_A c_A^* + p_B c_B^*,$$

the first-order conditions for a system of four equations in the four unknowns  $c_A^*$ ,  $c_B^*$ ,  $c_O^*$ , and  $\lambda^*$ . As a first step in solving this system, multiply the first-order condition for  $c_A$  by  $c_A^*$ , the first-order condition for  $c_B$  by  $c_B^*$ , and the first-order condition for  $c_O$  by  $c_O^*$ . Then, after dividing each first-order condition by  $\lambda^*$ , substituting them all into the binding budget constraint provides the solutions

$$\lambda^* = \frac{1}{Y}$$

and hence

$$c_0^* = \frac{(1-\alpha)Y}{p_O},$$

just as in question 1.

d. Next, divide the first-order condition for  $c_A$  by the first-order condition for  $c_B$  to obtain

$$\left(\frac{c_B^*}{c_A^*}\right)^{\frac{1}{\theta}} = \frac{p_A}{p_B}.$$

or

$$c_B^* = \left(\frac{p_A}{p_B}\right)^\theta c_A^*,$$

and substitute this expression into

$$c_F^* = \left(c_A^* \frac{\theta - 1}{\theta} + c_B^* \frac{\theta - 1}{\theta}\right)^{\frac{\theta}{\theta - 1}},$$

to obtain

$$c_A^* = c_F^* \left( \frac{p_A^{1-\theta} + p_B^{1-\theta}}{p_A^{1-\theta}} \right)^{\frac{\theta}{1-\theta}}$$

Substituting this expression for  $c_A^*$  back into the previous expression for  $c_B^*$  then yields

$$c_B^* = c_F^* \left( \frac{p_A^{1-\theta} + p_B^{1-\theta}}{p_B^{1-\theta}} \right)^{\frac{\theta}{1-\theta}}.$$

Both of these solutions coincide with those from question 2, with  $c_F^*$  in place of  $c_F$ .

e. It only remains to find  $c_F^*$ . This can be done by substituting the expressions for  $\lambda^*$ ,  $c_A^*$ , and  $c_B^*$  back into the first-order condition for  $c_A$  to obtain

$$c_F^* = \frac{\alpha Y}{(p_A^{1-\theta} + p_B^{1-\theta})^{\frac{1}{1-\theta}}},$$

which coincides with the solution to question 1 if we define the price aggregate for food as

$$p_F = (p_A^{1-\theta} + p_B^{1-\theta})^{\frac{1}{1-\theta}}.$$