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1. Utility Maximization

The consumer solves

min
cF ,cO

α ln(cF ) + (1 − α) ln(cO) subject to Y ≥ pF cF + p0c0.

The Lagrangian for this problem can be written as

L(cF , cO, λ) = α ln(cF ) + (1 − α) ln(cO) + λ(Y − pF cF − p0c0).

The first-order conditions for c∗F and c∗O are

α

c∗F
− λ∗pF = 0

and
1 − α

c∗O
− λ∗pO = 0,

and can be rearranged to read

c∗F =
α

λ∗pF
and

c∗O =
1 − α

λ∗pO
.

Substituting these last expressions into the binding constraint

Y = pF c
∗
F + pOc

∗
O

provides the solution

λ∗ =
1

Y
,

which can then be substituted back into the previous expressions to obtain

c∗F =
αY

pF

and

c∗O =
(1 − α)Y

pO
.

2. Expenditure Minimization

The consumer solves

min
cA,cB

pAcA + pBcB subject to
(
c
θ−1
θ

A + c
θ−1
θ

B

) θ
θ−1

≥ cF .
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a. Letting λ denote the nonnegative multiplier on the constraint, the Lagrangian for this
problem can be defined as

L(cA, cB, λ) = pAcA + pBcB − λ

[(
c
θ−1
θ

A + c
θ−1
θ

B

) θ
θ−1

− cF

]

b. With the Lagrangian defined as above, the Kuhn-Tucker theorem implies that the
values c∗A and c∗B that solve the problem, together with the associated value λ∗ of the
Lagrange multiplier, must satisfy the first-order conditions

pA − λ∗
(
c
∗ θ−1

θ
A + c

∗ θ−1
θ

B

) 1
θ−1

c
∗− 1

θ
A = 0

and

pB − λ∗
(
c
∗ θ−1

θ
A + c

∗ θ−1
θ

B

) 1
θ−1

c
∗− 1

θ
B = 0

c. Together with the binding constraint

cF =
(
c
∗ θ−1

θ
A + c

∗ θ−1
θ

B

) θ
θ−1

,

the first-order conditions form a system of three equations in the three unknowns c∗A,
c∗B, and λ∗. Although there are many ways of solving this system, perhaps the easiest
is to start by dividing the first-order condition for cA by the first-order condition for
cB to obtain

pA
pB

=

(
c∗B
c∗A

) 1
θ

or

c∗B =

(
pA
pB

)θ
c∗A,

and then substitute this expression for c∗B into the binding constraint to obtain the
solution

c∗A = cF

(
p1−θA + p1−θB

p1−θA

) θ
1−θ

Substituting this solution for c∗A back into the previous expression for c∗B then yields
the solution

c∗B = cF

(
p1−θA + p1−θB

p1−θB

) θ
1−θ

.

Although this approach allows us to find c∗A and c∗B without having to solve for λ∗, for
future reference it is helpful to note that, by substituting these solutions into either of
the two first-order conditions, one can find

λ∗ =
(
p1−θA + p1−θB

) 1
1−θ .
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d. With the minimum expenditure function defined as

E(cF , pA, pB) = min
cA,cB

pAcA + pBcB subject to
(
c
θ−1
θ

A + c
θ−1
θ

B

) θ
θ−1

≥ cF ,

it is possible to find the partial derivative of E with respect to cF in either of two ways.
The first is to use the solutions for c∗A and c∗B to find

E(cF , pA, pB) = pAc
∗
A + pBc

∗
B = cF

(
p1−θA + p1−θB

) 1
1−θ ,

then differentiate to obtain

∂E(cF , pA, pB)

∂cF
=
(
p1−θA + p1−θB

) 1
1−θ .

The second is to use the envelope theorem and the solution for λ∗ to obtain

∂E(cF , pA, pB)

∂cF
= λ∗ =

(
p1−θA + p1−θB

) 1
1−θ .

Since this partial derivative can be interpreted as the marginal cost of producing the
quantity aggregate, it suggests defining the price aggregate for food as

pF =
(
p1−θA + p1−θB

) 1
1−θ .

3. More Detailed Utility Maximization

The consumer solves

max
cA,cB ,cO

(
αθ

θ − 1

)
ln
(
c
θ−1
θ

A + c
θ−1
θ

B

)
+ (1 − α) ln(cO) subject to Y ≥ pAcA + pBcB + pOcO.

a. Letting λ denote the nonnegative multiplier on the constraint, the Lagrangian for this
problem can be defined as

L(cA, cB, cO, λ) =

(
αθ

θ − 1

)
ln
(
c
θ−1
θ

A + c
θ−1
θ

B

)
+(1−α) ln(cO)+λ(Y−pAcA−pBcB−pOcO).

b. With the Lagrangian defined as above, the Kuhn-Tucker theorem implies that the
values c∗A, c∗B, and c∗O that solve this problem, together with the associated value λ∗ of
the Lagrange multiplier, must satisfy the first-order conditions

αc
∗− 1

θ
A

c
θ−1
θ

A + c
θ−1
θ

B

− λ∗pA = 0,

αc
∗− 1

θ
B

c
θ−1
θ

A + c
θ−1
θ

B

− λ∗pB = 0,

and
1 − α

c∗O
− λ∗pO = 0.
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c. Together with the binding constraint

Y = p0c
∗
O + pAc

∗
A + pBc

∗
B,

the first-order conditions for a system of four equations in the four unknowns c∗A, c∗B,
c∗O, and λ∗. As a first step in solving this system, multiply the first-order condition for
cA by c∗A, the first-order condition for cB by c∗B, and the first-order condition for cO
by c∗O. Then, after dividing each first-order condition by λ∗, substituting them all into
the binding budget constraint provides the solutions

λ∗ =
1

Y

and hence

c∗0 =
(1 − α)Y

pO
,

just as in question 1.

d. Next, divide the first-order condition for cA by the first-order condition for cB to obtain(
c∗B
c∗A

) 1
θ

=
pA
pB
.

or

c∗B =

(
pA
pB

)θ
c∗A,

and substitute this expression into

c∗F =
(
c
∗ θ−1

θ
A + c

∗ θ−1
θ

B

) θ
θ−1

,

to obtain

c∗A = c∗F

(
p1−θA + p1−θB

p1−θA

) θ
1−θ

Substituting this expression for c∗A back into the previous expression for c∗B then yields

c∗B = c∗F

(
p1−θA + p1−θB

p1−θB

) θ
1−θ

.

Both of these solutions coincide with those from question 2, with c∗F in place of cF .

e. It only remains to find c∗F . This can be done by substituting the expressions for λ∗,
c∗A, and c∗B back into the first-order condition for cA to obtain

c∗F =
αY(

p1−θA + p1−θB

) 1
1−θ .

,

which coincides with the solution to question 1 if we define the price aggregate for food
as

pF =
(
p1−θA + p1−θB

) 1
1−θ .
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