
Final Exam

ECON 772001 - Math for Economists Peter Ireland
Boston College, Department of Economics Fall 2019

Due Thursday, December 19, at 12 noon

This exam has two questions on six pages; please check to make sure that your copy has all
six pages. Each question has four parts and each part of each question is worth five points,
for a total of 2× 4× 5 = 40 points overall.

This is an open-book exam, meaning that it is fine for you to consult your notes, homeworks,
textbooks, and other written or electronic references when working on your answers to the
questions. I expect you to work independently on the exam, however, without discussing the
questions or answers with anyone else, in person or electronically, inside or outside of the
class; the answers you submit must be yours and yours alone.

1. Consumption, Investment, and Capital Accumulation in a Small Open Econ-
omy

This question asks you to characterize optimal resource allocations in a “small open economy”
version of the Ramsey (neoclassical growth) model. The economy under consideration is
“open” because it can borrow from abroad to finance consumption and investment; it is
“small” because it takes the worldwide real interest rate as given.

Suppose, in particular, that a representative household in the small open economy can save
or borrow by buying or issuing internationally-traded bonds. Each bond sells for one unit of
output or consumption at time t and earns or pays interest at the constant global real interest
rate r. Let B(t) and K(t) denote the number of bonds and the units of capital owned by the
household at each time t ∈ [0,∞). Bond holdings B(t) can be positive or negative: if B(t) is
positive, the household is saving, or lending to the rest of the world, and if B(t) is negative,
the household is borrowing from the rest of the world. As in the closed-economy Ramsey
model, the household uses its K(t) units of capital to produce K(t)α units of output during
each period t ∈ [0,∞), where 0 < α < 1. Also as in the closed-economy Ramsey model, this
production function can be interpreted as a special case of the more general Cobb-Douglas
specification, K(t)αL(t)1−α, where labor is supplied inelastically by the household, so that
L(t) = 1 holds for all t ∈ [0,∞).

Let C(t) and I(t) denote the household’s consumption and investment in each period t ∈
[0,∞), and assume that the household faces a quadratic cost (φ/2)I(t)2, with φ > 0, mea-
sured in units of output, of adjusting its capital stock during each period t ∈ [0,∞). In
this model, I(t) can be positive, in which case the household is installing new capital, or
negative, in which case it is consuming or selling off existing capital; but, either way, the
formulation implies that it will incur adjustment costs in making these changes. Again as in
the closed-economy Ramsey model, physical capital depreciates at the constant rate δ, with
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0 < δ < 1, at each date t ∈ [0,∞).

Given the initial conditions B(0) and K(0), the household’s bond holdings and capital then
evolve over time according to

rB(t) +K(t)α − C(t)− I(t)− (φ/2)I(t)2 ≥ Ḃ(t) (1)

and
I(t)− δK(t) ≥ K̇(t) (2)

for all t ∈ [0,∞). Equation (1) shows that, during each period t ∈ [0,∞), the household
receives interest income rB(t) if B(t) > 0 or pays the interest expense rB(t) if B(t) < 0,
which it then combines with income K(t)α from production in order to finance spending C(t)
on consumption and I(t) on investment and to cover the capital adjustment cost (φ/2)I(t)2.
The constraint in (1), which will always bind at the optimum, determines the change Ḃ(t) =
dB(t)/dt in the household’s bond holdings over time. Equation (2), meanwhile, shows how
new investment I(t) replaces depreciated capital δK(t) before adding to the capital stock
at each t ∈ [0,∞). This constraint, which will also bind at the optimum, determines the
change K̇(t) = dK(t)/dt in the household’s capital stock over time.

The household’s preferences are described by the additively time-separable utility function∫ ∞
0

e−ρt ln(C(t)) dt, (3)

where ρ > 0 is the constant discount rate. Over the infinite horizon, the household chooses
paths for the flow variables C(t) and I(t) for all t ∈ [0,∞) and the stock variables B(t) and
K(t) for all t ∈ (0,∞) to maximize the utility function in (3) subject to the constraints in
(1) and (2).

Because the household chooses two flow variables and two stock variables, this problem is
slightly more complicated than those we studied in class. Nevertheless, our analysis from
class can be extended by defining the maximized current value Hamiltonian

H(B(t), K(t), θ(t), q(t)) = max
C(t),I(t)

{ln(C(t))

+ θ(t)[rB(t) +K(t)α − C(t)− I(t)− (φ/2)I(t)2]

+ q(t)[I(t)− δK(t)]}

(4)

and observing that, according to the maximum principle, the values of C(t), I(t), B(t), K(t)
that solve the dynamic optimization problem, together with the associated values of the
multipliers θ(t) and q(t), must satisfy the first-order conditions for the values of C(t) and
I(t) that solve the static, unconstrained optimization problem on the right-hand side of (4)
and the differential equations

θ̇(t) = ρθ(t)−HB(B(t), K(t), θ(t), q(t)),

q̇(t) = ρq(t)−HK(B(t), K(t), θ(t), q(t)),
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Ḃ(t) = Hθ(B(t), K(t), θ(t), q(t)),

and
K̇(t) = Hq(B(t), K(t), θ(t), q(t))

where the partial derivatives of the maximized current value Hamiltonian can be computed
by applying the envelope theorem to the optimization problem in (4).

a. To characterize more sharply the solution to the household’s problem, write down the
first-order conditions for C(t) and I(t) that solve the static, unconstrained optimization
problem on the right-hand side of (4). Then use the envelope theorem to rewrite the
differential equations for θ(t), q(t), B(t), and K(t) so that they, too, describe the
solution to the household’s dynamic optimization problem.

b. Suppose that ρ = r, so that the household’s discount rate exactly equals the worldwide
real interest rate. Although this might seem like a knife-edged restriction, recall from
some of your homework assignments that restrictions like this one can often be re-
interpreted as equilibrium conditions if, in this case, the model is extended to describe
how a large number of small open economies borrow and lend in perfectly competitive
markets for the internationally-traded bond. In any case, when ρ = r, what do the
optimality conditions you derived in part (a) imply about the behavior of consumption
C(t) and the multiplier θ(t)?

c. Still assuming that ρ = r, combine the first-order condition for I(t) and the differential
equation for q̇(t) that you derived in part (a), so as to eliminate reference to the
multiplier q(t) and obtain a differential equation involving I(t) and K(t) alone.

d. Combined with the differential equation for I(t) that you derived in part (c), the
differential equation for K̇(t) that you derived in part (a), which simply restates the
binding capital accumulation constraint, forms a system of two differential equations
describing the optimal paths for investment I(t) and the capital stock K(t) in this small
open economy. Use this pair of differential equations to draw a phase diagram that
illustrates the following property of the solution to the household’s problem: starting
from any value K(0) > 0 for the initial capital stock, there is a unique value of
investment I(0) such that, starting from I(0) and K(0), the optimally-chosen paths
for I(t) and K(t) converge to steady state values I∗ and K∗. In drawing this phase
diagram, it may be helpful to note that while investment I(t) can take on positive or
negative values, depending on whether the household is increasing or decreasing the
domestic capital stock, the capital stock K(t) itself must always remain positive.
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2. Random Walk Consumption and the Marginal Propensity to Consume

This question asks you to use dynamic programming to deduce what, in a famous 1978 article
from the Journal of Political Economy, Robert Hall called the “stochastic implications of
the life-cycle-permanent income hypothesis.” The example is similar to the one featuring
“saving with multiple random returns” that we studied in class, except that risk is introduced
here through random fluctuations in the consumer’s labor income instead through random
variation in asset returns.

To begin, let At denote a consumer’s bank account balance at the beginning of each period
t = 0, 1, 2, . . .. The consumer takes A0 as given, but can choose negative values of At for any
t = 1, 2, 3, . . ., in which case he or she is borrowing from the bank instead of saving.

At the beginning of period t, the consumer receives labor income yt. Assume that labor
income varies randomly over time, according to a Markov process by which the expected value
Etyt+1 of yt+1 at time t depends only on yt and not on additional lags yt−1, yt−2, yt−3, . . ..
During period t, knowing current income yt but still taking future income yt+j for j =
1, 2, 3, . . . as random, the consumer chooses consumption ct.

As in the example from class, it is convenient in setting up the consumer’s dynamic pro-
gramming problem to define his or her gross savings during period t as

st = At + yt − ct (5)

Assuming that the interest rate r on savings and borrowing is constant over time, the con-
sumer’s bank account balance then evolves according to

(1 + r)st ≥ At+1 (6)

for all t = 0, 1, 2, . . ..

Now, if the consumer’s preferences are described by the expected utility function

E0

∞∑
t=0

βtu(ct),

where the constant discount factor β satisfies 0 < β < 1, the consumer’s problem can be
described as one of choosing contingency plans for st, t = 0, 1, 2, . . ., and At, t = 1, 2, 3, . . .,
to maximize

E0

∞∑
t=0

βtu(At + yt − st)

subject to A0 given, the constraint in (6) for all t = 0, 1, 2, . . ., and the Markov process
generating the random income stream yt for all t = 0, 1, 2, . . .. The Bellman equation for
this problem is

v(At, yt) = max
st

u(At + yt − st) + βEt{v[(1 + r)st, yt+1]}.
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a. Using the Bellman equation from above, write down the first-order condition for st
and the envelope condition for At that help characterize the solution to the consumer’s
dynamic, stochastic optimization problem.

b. Next, combine your first-order and envelope conditions from part (a) with the help of
the constraints shown in (5) and (6) to obtain a single optimality condition (sometimes
called the“Euler equation”) that links the consumer’s intertemporal marginal rate of
substitution to the real interest rate.

c. Now assume that the household’s discount factor and the constant real interest rate
satisfy β(1 + r) = 1. Again, this may seem like a knife-edged restriction, but the
relationship emerges as an equilibrium condition in a more complicated model where
a large number of individual households borrow and lend in a competitive market for
bonds. Assume, as well, that the consumer’s single-period utility function is quadratic,
with

u(ct) = −(1/2)(ct − b)2

for some satiation, or “bliss,” point b that is large enough so that ct− b < 0 will always
hold. Use these assumptions, together with your optimality condition from part (b),
to re-derive Hall’s most famous result: that consumption should follow a random walk
(more precisely, a “martingale”), with

ct = Etct+1

for all t = 0, 1, 2, . . ..

d. By combining (5) and (6) to obtain

At + yt − ct ≥
At+1

1 + r
,

iterating by forward substitution, imposing some finite limit on borrowing to rule out
Ponzi schemes, and invoking the transversality condition ruling out an overaccumula-
tion of savings, one can – as we did for a simpler model in class – derive the consumer’s
present value budget constraint

At +
∞∑
j=0

yt+j
(1 + r)j

=
∞∑
j=0

ct+j
(1 + r)j

.

Here in this stochastic model, this present value budget constraint must hold for all
possible realizations {yt+j}∞j=0 of the path for future income. Therefore, the same
equality must hold in expected value at time t, so that

At +
∞∑
j=0

Etyt+j
(1 + r)j

=
∞∑
j=0

Etct+j
(1 + r)j

.

Using the result from part (c) that optimal consumption follows a martingale, the
restriction that β = 1/(1 + r), and Euclid’s formula

∞∑
j=0

βj =
1

1− β
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for the infinite sum, this version of the present-value budget constraint pins down the
optimal level of consumption at each date t = 0, 1, 2, . . . as

ct = (1− β)

[
At +

∞∑
j=0

βjEtyt+j

]
.

Suppose now that income follows a first-order autoregressive process, with

yt+1 = ȳ + ρ(yt − ȳ) + εt+1,

where ȳ is the long-run average level of income, the parameter ρ, satisfying 0 ≤ ρ < 1,
governs the persistence of fluctuations of income above or below its long-run average,
and εt+1 is a serially uncorrelated shock with mean zero. This law of motion for income
implies that

Etyt+j = ȳ + ρj(yt − ȳ)

and hence that

ct = (1− β)

[
At +

∞∑
j=0

βj ȳ +
∞∑
j=0

(βρ)j(yt − ȳ)

]
.

By applying Euclid’s formula to the two infinite sums that remain in this equation,
show that Hall’s model has two additional implications. Show, first, that the change
in ct brought about by a change in ȳ holding yt − ȳ constant (that is, the marginal
propensity to consume out of permanent income) equals one. Then show, also, that
the change in ct brought about by a change in yt − ȳ holding ȳ constant (that is, the
marginal propensity to consume out of deviations of income from its long-run average)
is less than one and gets smaller as ρ, measuring the persistence of those deviations,
declines.
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