1. The Gains From Diversification

Consider portfolios formed from two risky assets, the first with expected return equal to \(\mu_1 = 8 \) and standard deviation of its return equal to \(\sigma_1 = 8 \) and the second with expected return equal to \(\mu_2 = 4 \) and standard deviation of its return equal to \(\sigma_2 = 4 \). Let \(w \) denote the fraction of wealth in the portfolio allocated to asset 1 and \(1 - w \) the corresponding fraction of wealth allocated to asset 2. Suppose first that there is zero correlation between the two returns, so that \(\rho_{12} = 0 \), and compute the expected return on the portfolio and the standard deviation of the return on the portfolio for values of \(w \) equal to 0, 0.2, 0.4, 0.6, 0.8, and 1. Then repeat the calculations with \(\rho_{12} = -0.50 \). For which of these two values of \(\rho_{12} \) are the gains from diversification larger?

2. The Efficient Frontier

Suppose that in addition to the two risky assets from question 1, above, we add a third, with expected return equal to \(\mu_3 = 6 \) and standard deviation of its return equal to \(\sigma_3 = 6 \). Obviously, a 6 percent expected return can be achieved with a standard deviation of 6 percent simply by holding this third asset. The question is how much better one can do, in terms of a lower standard deviation, by holding the optimal diversified portfolio. To find out, suppose that the three asset returns are uncorrelated, so that \(\rho_{12} = \rho_{13} = \rho_{23} = 0 \). Then consider the problem: choose fractions \(w_1, w_2 \) and \(1 - w_1 - w_2 \) of a portfolio allocated to assets 1, 2, and 3 in order to maximize \(-\sigma_P^2\), minus one times the variance of the portfolio’s return, subject to the constraint that \(\mu_P \), the expected return on the portfolio, equals \(\bar{\mu} = 6 \). In class, we derived the first-order conditions for this problem. Use those first-order conditions together with the constraint to solve for the optimal choices of \(w_1, w_2 \) and \(1 - w_1 - w_2 \). Then calculate the minimized value of \(\sigma_P \). How does this minimized standard deviation compare to standard deviation \(\sigma_3 = 6 \) that an investor would have to accept by holding asset 3 alone?