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1. Ordinal Utility

The Lagrangian
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leads to the first-order conditions
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Together with the budget constraint
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the first-order conditions form a system of three equations in the three unknowns: ¢, ¢},
and \*.

There are a variety of ways to solve this three-equation system, but one is to divide the first
first-order condition by the second to obtain
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Then, rewrite the budget constraint as
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and substitute this expression into the one just before it to get
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or, more simply,

or

(1-a)Y

*_
Cb—
Db



Finally, use this solution for ¢ together with budget constraint again to obtain
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or, more simply,
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As in question 1 from problem set 2, the consumer finds it optimal to spend the fraction «
of his or her income on apples and the fraction 1 — o on bananas. This is not a coincidence.
Taking the natural log of the utility function used here yields
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which coincides with the utility function used in the previous problem. Since the natural
logarithm is a strictly increasing function, the two utility functions represent exactly the
same underlying preference ordering.

2. Expected Utility and Aversion to Risk

With von Neumann-Morgenstern expected utility function
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and Wy = 10, the table below compares the three lotteries (z,y,7) = (5,0,1/2), (z,y,7) =
(2.5,0,1) and (z,y,7) = (2,0,1) when v =1/2, v =2 and 7 = 3.

v U(5,0,1/2) U(25,0,1) U(2,0,1)

1/2 7.0353 7.0711 6.9282
2 —0.0833 —0.0800 —0.0833
3 —0.0036 —0.0032 —0.0035

For all values of «, the investor always prefers getting the average of 2.5 for sure to the
alternative of 5 with probability 1/2 and 0 with probability 1/2. This first set of compar-
isons shows us once again how the concavity of the Bernoulli utility function represents the
investor’s aversion to risk. On the other hand, even a risk averse investor will be willing
to accept gambles when the safer alternative offers less than the expected value of the bet.
In this case, the investor with v = 1/2 prefers the risky bet to receiving 2 for sure; the
investor with v = 2 is indifferent between the two options, and the investor with v = 3
prefers receiving 2 for sure. This second set of comparisons suggests that ~ is a measure of
risk aversion, with higher values of v implying more risk averse behavior.



