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Analytic Strategy

We have already used the Arrow-Debreu model as an
equilibrium theory of asset pricing.

But the model also works as a no-arbitrage theory, in which (1)
contingent claims prices are inferred from existing asset prices
and then (2) used to price other assets and risky cashflows.

The framework cleverly and usefully sidesteps the important,
but as yet unresolved, problem of making assumptions about
investors’ utility functions or the distribution of consumption
and/or asset returns.



Analytic Strategy

Two innovative papers along these lines appeared in the late
1970s, around the same time that Robert Lucas was working
out the details of the CCAPM. Merton Miller won the Nobel
Prize in 1990.

Douglas Breeden and Robert Litzenberger, “Prices of
State-Contingent Claims Implicit in Option Prices,” Journal of
Business Vol.51 (October 1978): pp.621-651.

Rolf Banz and Merton Miller, “Prices for State-Contingent
Claims: Some Estimates and Applications,” Journal of
Business Vol.51 (October 1978): pp.653-672.



Market Completeness and Complex Securities

At the beginning of the term, we briefly discussed the concept
of market completeness. We can now define and discuss the
concept in more detail.

Financial markets are complete if, for each possible state of
each future date, there exists a market for a contingent claim
that pays off one unit of consumption in that date-state
combination and zero otherwise.



Market Completeness and Complex Securities

Of course, we do not see pure contingent claims being traded
in any financial market.

But “synthetic” contingent claims can often be constructed
from portfolios of complex securities that make payoffs in more
than one state-date combination like those we do see traded.

Typically, however, this requires that markets be complete.



Market Completeness and Complex Securities

To see how this works, let’s begin with an example in which
markets are complete, and use contingent claims prices to
price a complex asset.

Suppose that there are two dates, today (t = 0) and “next
period” (t = 1). And suppose there are three possible states,
i = 1, 2, 3, at t = 1.

Financial markets are complete, therefore, if contingent claims
are traded at t = 0 for all three states at t = 1.



Market Completeness and Complex Securities

Assume, therefore, that we observe the three contingent
claims prices: q1 = 0.60, q2 = 0.20, and q3 = 0.15.

Consider a complex security (security j = 1) with payoff
z11 = 3 in state 1, payoff z21 = 2 in state 2, and payoff z31 = 0
in state 3.



Market Completeness and Complex Securities

q1 = 0.60, q2 = 0.20, q3 = 0.15.

z11 = 3, z21 = 2, z31 = 0

Since the payoffs provided by the complex security can be
replicated by a portfolio consisting of 3 contingent claims for
state 1 and 2 contingent claims for state 2, the price of the
complex security must equal 0.60× 3 + 0.20× 2 = 2.20. The
general formula is

pA1 = q1z11 + q2z21 + q3z31



Market Completeness and Complex Securities

In this first example, we did not “need” the contingent claim
for state 3.

But suppose we want to consider a second complex security
(security j = 2) with payoff z12 = 1 in state 1, payoff z22 = 1 in
state 2, and payoff z32 = 1 in state 3.



Market Completeness and Complex Securities

q1 = 0.60, q2 = 0.20, q3 = 0.15.

z12 = 1, z22 = 1, z32 = 1

Since the payoffs provided by the complex security can be
replicated by a portfolio consisting of 1 contingent claim for
state 1, 1 contingent claim for state 2, and 1 contingent claim
for state 3, the price of the complex security must equal

pA2 = q1z12 + q2z22 + q3z32 = 0.60 + 0.20 + 0.15 = 0.95



Market Completeness and Complex Securities

To price assets j = 1 and j = 2, we need all three contingent
claims.

Partly for practice but also to set the stage for the next step in
our analysis, consider a third complex security (j = 3), with
payoff z13 = 2 in state 1, payoff z23 = 0 in state 2, and payoff
z33 = 2 in state 3.



Market Completeness and Complex Securities

q1 = 0.60, q2 = 0.20, q3 = 0.15.

z13 = 2, z23 = 0, z33 = 2

pA3 = q1z13 + q2z23 + q3z33 = 0.60× 2 + 0.15× 2 = 1.50



Market Completeness and Complex Securities

Now, let’s turn the problem around. Suppose we observe the
payoffs and prices of the three complex securities:

Asset z1j z2j z3j pAj
j = 1 3 2 0 2.20
j = 2 1 1 1 0.95
j = 3 2 0 2 1.50

Can we use these data to infer the prices of the three
contingent claims and thereby confirm that markets are
complete, even without explicit markets for the contingent
claims?



Market Completeness and Complex Securities

Asset z1j z2j z3j pAj
j = 1 3 2 0 2.20
j = 2 1 1 1 0.95
j = 3 2 0 2 1.50

Consider a portfolio consisting of w 1
1 “units” of asset 1, w 2

1

units of asset 2, and w 3
1 units of asset three. This portfolio

has payoffs:
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1 + w 2

1 z
1
2 + w 3

1 z
1
3 = 3w 1

1 + w 2
1 + 2w 3

1 in state 1

w 1
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2
1 + w 2

1 z
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2 + w 3
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1 + w 2
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w 1
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Market Completeness and Complex Securities

The portfolio has payoffs:

3w 1
1 + w 2

1 + 2w 3
1 in state 1

2w 1
1 + w 2

1 in state 2

w 2
1 + 2w 3

1 in state 3

Let’s use this portfolio “synthesize” a contingent claim for
state 1. We need:

3w 1
1 + w 2

1 + 2w 3
1 = 1

2w 1
1 + w 2

1 = 0

w 2
1 + 2w 3

1 = 0



Market Completeness and Complex Securities

We have a system of three linear equations in three unknowns:

3w 1
1 + w 2

1 + 2w 3
1 = 1

2w 1
1 + w 2

1 = 0

w 2
1 + 2w 3

1 = 0

The solution has
w 1
1 = 1/3

w 2
1 = −2/3

w 3
1 = 1/3



Market Completeness and Complex Securities

Asset z1j z2j z3j pAj
j = 1 3 2 0 2.20
j = 2 1 1 1 0.95
j = 3 2 0 2 1.50

Buying a portfolio consisting of 1/3 unit of asset 1, −2/3
units of asset 2, and 1/3 unit of asset 3 costs

q1 = (1/3)× 2.20− (2/3)× 0.95 + (1/3)× 1.50 = 0.60

Of course, this is the same price for a contingent claim for
state 1 that we assumed at the outset.



Market Completeness and Complex Securities

Asset z1j z2j z3j pAj
j = 1 3 2 0 2.20
j = 2 1 1 1 0.95
j = 3 2 0 2 1.50

Next, let’s assemble the portfolio to replicate the contingent
claim for state 2. If it consists of w 1

2 units of asset 1, w 2
2 units

of asset 2, and w 3
2 units of asset three, this portfolio has

payoffs:
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2 z
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2 z
1
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2 z
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3 = 3w 1

2 + w 2
2 + 2w 3

2 in state 1
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2 z
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2 + 2w 3
2 in state 3



Market Completeness and Complex Securities

The portfolio has payoffs:

3w 1
2 + w 2

2 + 2w 3
2 in state 1

2w 1
2 + w 2

2 in state 2

w 2
2 + 2w 3

2 in state 3

To synthesize a contingent claim for state two, we need:

3w 1
2 + w 2

2 + 2w 3
2 = 0

2w 1
2 + w 2

2 = 1

w 2
2 + 2w 3

2 = 0



Market Completeness and Complex Securities

We again have a system of three linear equations in three
unknowns:

3w 1
2 + w 2

2 + 2w 3
2 = 0

2w 1
2 + w 2

2 = 1

w 2
2 + 2w 3

2 = 0

The solution has
w 1
2 = 0

w 2
2 = 1

w 3
2 = −1/2



Market Completeness and Complex Securities

Asset z1j z2j z3j pAj
j = 1 3 2 0 2.20
j = 2 1 1 1 0.95
j = 3 2 0 2 1.50

Buying a portfolio consisting of 0 units of asset 1, 1 unit of
asset 2, and −1/2 unit of asset 3 costs

q2 = 0.95− (1/2)× 1.50 = 0.20

And of course, this is the same price for a contingent claim for
state 2 that we assumed at the outset.



Market Completeness and Complex Securities

Asset z1j z2j z3j pAj
j = 1 3 2 0 2.20
j = 2 1 1 1 0.95
j = 3 2 0 2 1.50

Finally, let’s assemble the portfolio to replicate the contingent
claim for state 3. If it consists of w 1

3 units of asset 1, w 2
3 units

of asset 2, and w 3
3 units of asset three. This portfolio has

payoffs:

w 1
3 z

1
1 + w 2

3 z
1
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3 in state 3



Market Completeness and Complex Securities

The portfolio has payoffs:

3w 1
3 + w 2

3 + 2w 3
3 in state 1

2w 1
3 + w 2

3 in state 2

w 2
3 + 2w 3

3 in state 3

To synthesize a contingent claim for state three. We need:

3w 1
3 + w 2

3 + 2w 3
3 = 0

2w 1
3 + w 2

3 = 0

w 2
3 + 2w 3

3 = 1



Market Completeness and Complex Securities

The system of three linear equations in three unknowns:

3w 1
3 + w 2

3 + 2w 3
3 = 0

2w 1
3 + w 2

3 = 0

w 2
3 + 2w 3

3 = 1

has the solution
w 1
3 = −1/3

w 2
3 = 2/3

w 3
3 = 1/6



Market Completeness and Complex Securities

Asset z1j z2j z3j pAj
j = 1 3 2 0 2.20
j = 2 1 1 1 0.95
j = 3 2 0 2 1.50

Buying a portfolio consisting of −1/3 unit of asset 1, 2/3
units of asset 2, and 1/6 unit of asset 3 costs

q3 = −(1/3)× 2.20 + (2/3)× 0.95 + (1/6)× 1.50 = 0.15

Again of course, this is the same price for a contingent claim
for state 3 that we assumed at the outset.



Market Completeness and Complex Securities

These examples are illustrative of two more general results.

Proposition 1 If markets are complete, any complex security or
cash flow stream can be replicated as a portfolio of contingent
claims.

This proposition underlies our ability to price complex assets
using contingent claims prices.



Market Completeness and Complex Securities

To work in reverse, and construct contingent claims from
complex assets, it was important that we had three complex
assets: one for each state at t = 1. Otherwise, we would have
had more equations (states) than unknowns (amounts of each
asset to buy).

More generally, if there are N states at t = 1, we would need
M = N different complex assets to have the same number of
equations as unknowns.



Market Completeness and Complex Securities

Suppose, however, that in our example the third asset had
payoffs z13 = 2, z23 = 2, and z33 = 2 instead of z13 = 2, z23 = 0,
and z33 = 2.

A technical problem would arise, because although there are
three complex assets, buying one unit of asset 3 yields exactly
the same payoffs as buying two units of asset 2, with z12 = 1,
z22 = 1, and z32 = 1.

In effect, we would have had only two “linearly independent”
assets: again, in our systems, we would have had more
equations (states) than unknowns (amounts of each asset to
buy).



Market Completeness and Complex Securities

More generally, the “linear independence” requirement means
that it should not be possible to replicate exactly the payoffs
from one complex security using a portfolio of the other
complex securities. But subject to this caveat, we have our
second general result.

Proposition 2 If M = N , where M is the number of complex
securities and N the number of states, and if all of the M
complex securities have linearly independent payoffs, then (i) it
is possible to infer the prices of contingent claims from the
prices of the complex securities and (ii) markets are complete.



Market Completeness and Complex Securities

Once we are able to infer contingent claims prices from the
prices of existing complex securities, we can use no-arbitrage
arguments to price other complex securities and risky cash
flows.

In particular, the value at t = 0 of a project that returns X i in
state i = 1, 2, . . . ,N at t = 1 can be calculated as

PA =
N∑
i=1

qiX i



Market Completeness and Complex Securities

This first round of examples shows how the Arrow-Debreu
“fiction” of complete markets for contingent claims is not so
fanciful after all.

We can now turn our attention to the practical question:
which real-world assets are most convenient to use in solving
for contingent claims prices.

In cases without uncertainty, interest rates on bonds of
different terms to maturity will work. In cases with
uncertainty, options prices are especially valuable.



Using the Term Structure of Interest Rates

In multi-period problems without uncertainty, discount bonds
of different maturities are contingent claims.

A discount bond with T years to maturity costs P(T ) today
and pays off one dollar T years from now.

Under certainty, this bond has the same payoff as a contingent
claim that returns one dollar in the one possible state T years
from now. If we know the bond’s price P(T ), we also know
the contingent claims price q(T ).



Using the Term Structure of Interest Rates

The term structure of interest rates is the family of interest
rates, r(1), r(2), r(3), . . ., on risk-free discount bonds with
terms t = 1, 2, 3, . . . to maturity.

Since the interest rate on a T -year discount bond is defined by

P(T ) =
1

[1 + r(T )]T

there is a direct connection between the term structure of
interest rates and the contingent claims prices in cases without
uncertainty.



Using the Term Structure of Interest Rates

This insight also tells us that if we want to use the
Arrow-Debreu approach to value a multi-period project with
certain cash flows X (1),X (2), . . . ,X (T ) over the next T
years, we can simply discount those future cash flows using the
term structure of interest rates:

PA = q(1)X (1) + q(2)X (2) + . . .+ q(T )X (T )

= P(1)X (1) + P(2)X (2) + . . .+ P(T )X (T )

=
X (1)

1 + r(1)
+

X (2)

[1 + r(2)]2
+ . . .+

X (T )

[1 + r(T )]T



Using the Term Structure of Interest Rates

As we discussed previously, the US Treasury issues bills with
maturities less than one year that are structured as discount
bonds.

Longer-term US Treasury bonds make regular interest
(“coupon”) payments. But the US Treasury allows financial
institutions to break these bonds down into portfolios of
separately-traded discount bonds, called STRIPS (Separate
Trading of Registered Interest and Principal of Securities).



Using the Term Structure of Interest Rates

Even without STRIPS, however, it is possible to construct
“synthetic” discount bonds from portfolios of coupon bonds.

To see how, consider two coupon bonds, with the same term
to maturity but different coupon payments.



Using the Term Structure of Interest Rates

A five-year bond with 1000 face (or par) value and 5 percent
annual coupon rate makes payments of 50 each year, every
year, for the next five years and then returns 1000 at the end
of five years.

A five-year bond with 1000 face (or par) value and 10 percent
annual coupon rate makes payments of 100 each year, every
year, for the next five years and then returns 1000 at the end
of five years.



Using the Term Structure of Interest Rates

Payoffs at Price at
Bond t = 1 t = 2 t = 3 t = 4 t = 5 t = 0

5% Coupon 50 50 50 50 1050 750
10% Coupon 100 100 100 100 1100 900

The second bond sells at a higher price today, in light of its
higher coupon rate.



Using the Term Structure of Interest Rates

Consider the strategy of buying two of the bonds with the 5
precent coupon and selling one bond with the 10 percent
coupon, in order the “cancel out” the interest payments.

Payoffs at Price at
Bond t = 1 t = 2 t = 3 t = 4 t = 5 t = 0

5% Coupon 50 50 50 50 1050 750
10% Coupon 100 100 100 100 1100 900
Portfolio 0 0 0 0 1000 600



Using the Term Structure of Interest Rates

Payoffs at Price at
Bond t = 1 t = 2 t = 3 t = 4 t = 5 t = 0

5% Coupon 50 50 50 50 1050 750
10% Coupon 100 100 100 100 1100 900
Portfolio 0 0 0 0 1000 600

The portfolio of bonds costs 600 today and pays 1000 at the
end of five years. These cash flows are identical to those
provided by a discount bond that costs 600 today and pays
1000 five years from now.



Using the Term Structure of Interest Rates

The portfolio of bonds costs 600 today and pays 1000 at the
end of five years.

We can compute the 5-year interest rate in the term structure
using

600 =
1000

[1 + r(5)]5

r(5) = 0.1076

and the associated contingent claim price as

q(5) =
1

[1 + r(5)]5
= 0.60



Using the Term Structure of Interest Rates

Of course, only rarely will it be appropriate to assume there is
no uncertainty when pricing assets or cash flows.

In those circumstances, however, we can use information in
the term structure of interest rates or, equivalently, in the
prices of coupon bonds to infer contingent claims prices.



The Value Additivity Theorem

Before moving on to consider the more realistic case with
uncertainty in full detail, it is useful to consider a result that is
interesting in its own right, but also useful in underscoring one
of the most important lessons that we drew from our analysis
of the CAPM and CCAPM, that only aggregate risk is
reflected in asset prices and returns.



The Value Additivity Theorem

To illustrate the result, consider once more the case where
there are two dates, t = 0 and t = 1, and i = 1, 2, . . . ,N
possible states at t = 1.

And consider two complex securities, j = 1 and j = 2, with
prices pA1 and pA2 at t = 0 and payoffs z i1 and z i2 in each state
i = 1, 2, . . . ,N at t = 1.



The Value Additivity Theorem

The Value Additivity Theorem says that if there is a third
asset, j = 3, with payoffs that are, in every state, equal to the
same linear combination of the payoffs provided by assets
j = 1 and j = 2, so that

z i3 = αz i1 + βz i2 for all i = 1, 2, . . . ,N ,

then the price of asset j = 3 must be the same linear
combination of the prices of assets j = 1 and j = 2, so that

pA3 = αpA1 + βpB2 .



The Value Additivity Theorem

The Value Additivity Theorem follows from a familiar
no-arbitrage argument. Since

z i3 = αz i1 + βz i2 for all i = 1, 2, . . . ,N ,

the payoffs from asset j = 3 can be reproduced by the
portfolio formed from α units of asset j = 1 and β units of
asset j = 3. The cost of this portfolio is

αpA1 + βpB2 .

So if pA3 > αpA1 + βpB2 , it would be profitable to sell asset
j = 3 and buy the portfolio, and if pA3 < αpA1 + βpB2 , it would
be profitable to buy asset j = 3 and sell the portfolio.



The Value Additivity Theorem

As an interesting and revealing special case, suppose that the
payoffs on assets j = 1 and j = 2 are perfectly negatively
correlated, so that

αz i1 + βz i2 = Z for all i = 1, 2, . . . ,N ,

where Z is constant across all states i = 1, 2, . . . ,N .

In this case, asset j = 3 is risk free, and so the return to
holding asset j = 3 must equal the risk-free rate.



The Value Additivity Theorem

In this case, asset j = 3 is risk free, and so the return to
holding asset j = 3 must equal the risk-free rate.

But how could the two risky assets, j = 1 and j = 2, provide
higher rates of return while yielding the risk-free rate in
combination? The answer is that they cannot.

Since the payoffs from assets j = 1 and j = 2 are perfectly
negatively correlated, those payoffs contain only idiosyncratic
risk. And, as we have seen from the CAPM and CCAPM,
idiosyncratic risk is not priced.



The Value Additivity Theorem

Note once again that none of the arguments we’ve worked
through so far has made any reference at all to preferences or
distributions of consumption and/or returns.

That is the appeal of the no-arbitrage approach: it requires
none of the special assumptions that cause problems for the
CAPM and CCAPM.



Using Options to Complete the Market

Consider an example with two periods, t = 0 and t = 1, and
three possible states, i = 1, 2, 3, at t = 1.

Suppose only one asset is traded: a complex security with
payoff P1

s = 1 in state 1, P2
s = 2 in state 2, and P3

s = 3 in
state 3.

Think of this asset as a stock, so that the payoff P i
s is the

share price, obtained by selling the stock at t = 1.



Using Options to Complete the Market

A call option is a contract that gives the buyer the right, but
not the obligation, to purchase a share of stock at the strike
price K at t = 1 or, more generally, on or before some
expiration date T .

At t = 1, the call is said to be in the money if the actual share
price is above the strike price and out of the money if the
actual share price is below the strike price.

At t = 1, the option will have value only if it is in the money.
But at t = 0, the option will have value even if there is only a
probability of it being in the money at t = 1.



Using Options to Complete the Market

With the stock as the only traded asset, and three states at
t = 0, financial markets are incomplete.

Suppose, however, that we introduce two options on the
stock: one with strike price K = 1 and the other with strike
price K = 2.



Using Options to Complete the Market

Let C i
1(S , 1) denote the payoffs generated by the call option

on the stock S with strike price K = 1 with expiration date at
T = 1 in each state i = 1, 2, 3.

Let C i
1(S , 2) denote the payoffs generated by the call option

on the stock S with strike price K = 2 with expiration date at
T = 1 in each state i = 1, 2, 3.



Using Options to Complete the Market

We can use information on the stock price to determine the
payoffs from the two call options:

State P i
s C i

1(S , 1) C i
1(S , 2)

1 1 0 0
2 2 1 0
3 3 2 1

Now we can ask if the addition of the two options make
markets complete.



Using Options to Complete the Market

State P i
s C i

1(S , 1) C i
1(S , 2)

1 1 0 0
2 2 1 0
3 3 2 1

The answer is yes:

1. The option with strike price 2 is a contingent claim for
state 3.

2. Buying one call with strike price 1 and selling (“writing”)
2 calls with strike price 2 creates a contingent claim for
state 2.

3. Buying one share of the stock, selling 2 calls with strike
price 1, and buying one call with strike price 2 creates a
contingent claim for state 1.



Using Options to Complete the Market

Of course, it would also be possible to “complete the market”
with two other assets, so long as their payoffs are linearly
independent.

But options are an obvious choice, since they are related to
the assets that are already traded.

And since they often give rise to a structure of payoffs across
the complex assets that makes solving for contingent claims
prices relatively easy.



Using Options to Complete the Market

Unfortunately, it is not always possible to complete the market
using a single stock and a set of call options on that stock.

To see why, suppose that instead of having P1
s = 1, P2

s = 2,
and P3

s = 3, the stock in our example had P1
s = 2, P2

s = 2,
and P3

s = 3.

Since its price does not differ across states 1 and 2, it won’t
be possible to use this stock and the associated options to
obtain complete markets.



Using Options to Complete the Market

Recomputing the payoffs from options with strike prices K = 1
and K = 2:

State P i
s C i

1(S , 1) C i
1(S , 2)

1 2 1 0
2 2 1 0
3 3 2 1

In this case, a portfolio formed by buying two calls with strike
price K = 1 and writing one call with strike price K = 2 yields
the same payoffs as the stock itself. Markets are not complete.



Using Options to Complete the Market

Fortunately, this problem can often be sidestepped by first
forming a portfolio of stocks and then introducing a set of call
options on the entire portfolio.

Suppose we have two stocks, s = 1 and s = 2, with payoffs:

State P i
s=1 P i

s=2

1 1 1
2 1 2
3 2 2



Using Options to Complete the Market

State P i
s=1 P i

s=2

1 1 1
2 1 2
3 2 2

Stock 1 does not “distinguish” between states 1 and 2, and
stock 2 does not distinguish between states 2 and 3.

But consider the payoffs provided by a portfolio P consisting
of one share of stock 1 and one share of stock 2.



Using Options to Complete the Market

State P i
s=1 P i

s=2 P i
p

1 1 1 2
2 1 2 3
3 2 2 4

Now the payoffs from the portfolio differ across all states.

Let’s add call options on the portfolio with strike prices K = 2
and K = 3.



Using Options to Complete the Market

State P i
s=1 P i

s=2 P i
p C i

1(P , 2) C i
1(P , 3)

1 1 1 2 0 0
2 1 2 3 1 0
3 2 2 4 2 1

Since the payoffs from the portfolio and the two options on
the portfolio are linearly independent, markets are complete.



Using Options to Complete the Market

State P i
s=1 P i

s=2 P i
p C i

1(P , 2) C i
1(P , 3)

1 1 1 2 0 0
2 1 2 3 1 0
3 2 2 4 2 1

You can confirm that:

1. A contingent claim for state 3 can be constructed by
buying one call with strike price 3.

2. A contingent claim for state 2 can be constructed by
buying one call with strike price 2 and writing two calls
with strike price 3.

3. A contingent claim for state 1 can be constructed by
buying 1/2 a share in the portfolio, writing 1 1/2 calls
with strike price 2, and buying one call with strike price 3.



Using Options to Complete the Market

These insights generalize to provide us with another
proposition:

Proposition 3 A necessary and sufficient condition for the
creation of a complete set of Arrow-Debreu securities is that
there exists a single portfolio with the property that options
can be purchased and written on it and such that its payoff
pattern distinguishes among all future states.



Using Options to Infer Contingent Claims Prices

We can now combine the message of our last proposition with
another basic lesson we learned from studying the CAPM to
get a practical idea as to how to infer contingent claims prices
under uncertainty in the real world.

Proposition 3 indicates that it is helpful to start with a
portfolio with a payoff pattern that distinguishes among all
future states. The CAPM suggests that this portfolio is likely
to be the market portfolio, since returns on the market
portfolio will reflect all underlying sources of aggregate risk.



Using Options to Infer Contingent Claims Prices

So let’s see how we can use the market portfolio and
associated call options to infer contingent claims prices.

Let P i
s now denote the value of a share in the market portfolio

in each state i = 1, 2, . . . ,N at t = 1.

To streamline the notation, rearrange the labeling of the states
as necessary so that those with higher indices i correspond to
more favorable outcomes for the stock market:

P1
s < P2

s < . . . < PN
s



Using Options to Infer Contingent Claims Prices

Rearrange the labeling of the states so that

P1
s < P2

s < . . . < PN
s

and assume, as well, that there is a constant increment δ > 0
by which stock prices rise across states, so that

P i+1
s = P i

s + δ for all i = 1, 2, . . . ,N − 1

This last assumption involves an approximation if the value of
the market portfolio can vary continuously, but the
approximation can be made arbitrarily good by choosing N
sufficiently large and δ sufficiently small.



Using Options to Infer Contingent Claims Prices

Now for any particular state i , construct a portfolio by

1. Buying one call with strike price P i−1
s = P i

s − δ.

2. Writing two calls with strike price P i
s .

3. Buying one call with strike price P i+1
s = P i

s + δ.

Letting V0(S ,K ) denote the price (value) at t = 0 of the call
option on the stock with strike price K , the cost of assembling
this portfolio of options is:

V 0
p = V0(S ,P

i
s + δ) + V0(S ,P

i
s − δ)− 2V0(S ,P

i
s)



Using Options to Infer Contingent Claims Prices

Now let’s see how the payoffs on the portfolio of options
depends on the stock price at t = 1:

Stock Price C1(S ,P
i
s − δ) −2C1(S ,P

i
s) C1(S ,P

i
s + δ) Cp

P ≤ P i
s − δ 0 0 0 0

P = P i
s δ 0 0 δ

P ≥ P i
s + δ P − P i

s + δ −2(P − P i
s) P − P i

s − δ 0

This portfolio pays off δ in state i and zero otherwise. Hence,
it is equivalent to a portfolio of δ contingent claims for state i .



Using Options to Infer Contingent Claims Prices

Letting V0(S ,K ) denote the price (value) at t = 0 of the call
option on the stock with strike price K , the cost of assembling
this portfolio of options is

V 0
p = V0(S ,P

i
s + δ) + V0(S ,P

i
s − δ)− 2V0(S ,P

i
s)

And since this portfolio of options is equivalent to a portfolio
of δ contingent claims for state i , we can now infer that the
price of a contingent claim for state i is

qi =

(
1

δ

)
[V0(S ,P

i
s + δ) + V0(S ,P

i
s − δ)− 2V0(S ,P

i
s)]



Using Options to Infer Contingent Claims Prices

qi =

(
1

δ

)
[V0(S ,P

i
s + δ) + V0(S ,P

i
s − δ)− 2V0(S ,P

i
s)]

Note that we don’t have to actually buy the options if all we
want to do is to price the contingent claim, we simply need to
observe the option prices.

And if the options we need are not actually traded, we can use
an options pricing formula to figure out what their prices
should be.



Black-Scholes Option Pricing

We have now seen how we can use options prices together
with no-arbitrage arguments to make inferences about
contingent claims prices.

More sophisticated no-arbitrage arguments constructed by
Fischer Black (US, 1938-1995), Myron Scholes (Canada/US,
b.1941, Nobel Prize 1997), and Robert Merton (US, b.1944,
Nobel Prize 1997) showed how options prices could be inferred
from assumptions about and observations on the underlying
stock price.



Black-Scholes Option Pricing

Their papers were both published in 1973.

Fischer Black and Myron Scholes, “The Pricing of Options
and Corporate Liabilities,” Journal of Political Economy Vol.81
(May-June 1973): pp.637-654.

Robert Merton, “Theory of Rational Option Pricing,” The Bell
Journal of Economics and Management Science Vol.4 (Spring
1973): pp.141-183.



Black-Scholes Option Pricing

To see how the theory works, continue to assume a simple
two-period structure, with t = 0 and t = 1, and assume as
well, that there are only two states, i = G and i = B , at
t = 1. Let

P0 = price of the stock at t = 0

PG = price of the stock in state i = G at t = 1

PB = price of the stock in state i = B at t = 1

rf = risk-free interest rate between t = 0 and t = 1

π = probability of the good state i = G at t = 1



Black-Scholes Option Pricing

The stock price is P0 at t = 0 and either PG or PB at t = 1.



Black-Scholes Option Pricing

Now consider a call option on the stock with strike price K .
Let

V0 = price (value) of the call at t = 0

CG = payoff generated by the call in state i = G at t = 1

CB = payoff generated by the call in state i = B at t = 1

Assume, for now, that the call is in the money in both states
at t = 1. Then:

CG = PG − K and CB = PB − K



Black-Scholes Option Pricing

Here, the call with strike price K is in the money in both
states at t = 1.



Black-Scholes Option Pricing

We can easily compute the expected payoff as
π(PG − K ) + (1− π)(PB − K ), but the option price V0 must
still be corrected for risk.



Black-Scholes Option Pricing

One of the key insights that underlies the Black-Scholes
formula is that we don’t need to make any specific
assumptions about preferences or the nature of aggregate risk
to price the option.

Instead, we can use a no-arbitrage argument that:

1. Replicates the option’s payoffs using a portfolio of the
stock and a risk-free bond.

2. Recognizes that risk is already priced into the stock.



Black-Scholes Option Pricing

Stock’s Bond’s Option’s
State Payoff Payoff Payoff
G PG 1 + rf PG − K
B PB 1 + rf PB − K

We want to construct a portfolio consisting of S shares of the
stock and B bonds that replicates the payoffs from the option
in both states at t = 1:

SPG + B(1 + rf ) = PG − K

SPB + B(1 + rf ) = PB − K



Black-Scholes Option Pricing

SPG + B(1 + rf ) = PG − K

SPB + B(1 + rf ) = PB − K

This is a set of two linear equations in the two unknowns: S
and B . The solution is

S = 1 and B = − K

1 + rf

Since the stock costs P0 and the bond costs 1, the cost of this
portfolio at t = 0 is

P0 −
K

1 + rf



Black-Scholes Option Pricing
The option’s payoffs are replicated by a portfolio with

S = 1 and B = − K

1 + rf

and since the stock costs P0 and the bond costs 1, the cost of
this portfolio at t = 0 is

P0 −
K

1 + rf

But this means that the price of the option must also be

V0 = P0 −
K

1 + rf



Black-Scholes Option Pricing

V0 = P0 −
K

1 + rf

Note that the price of the option is not equal to the expected
value of its payoff, for the same reason that the stock price P0

will not be the expected value of its payoff: both prices need
to be adjusted for risk.

Yet, our clever use of no-arbitrage arguments allows us to price
the option without making any assumptions about risk and,
for that matter, without even having to know the probabilities
π and 1− π of the two states at t = 1. All of this information
has already been incorporated into the stock price P0.



Black-Scholes Option Pricing

V0 = P0 −
K

1 + rf

For future reference, let’s write the solution for the option
price in this first case as

V0 = N1P0 − N2

(
K

1 + rf

)
,

where, in this case,

N1 = 1 and N2 = 1



Black-Scholes Option Pricing

Next, let’s consider the case in which the call is in the money
in the good state and out of the money in the bad state at
t = 1.

Then
CG = PG − K and CB = 0



Black-Scholes Option Pricing

Here, the call with strike price K is in the money in the good
state and out of the money in the bad.



Black-Scholes Option Pricing

Stock’s Bond’s Option’s
State Payoff Payoff Payoff
G PG 1 + rf PG − K
B PB 1 + rf 0

Again we want to construct a portfolio consisting of S shares
of the stock and B bonds that replicates the payoffs from the
option in both states at t = 1:

SPG + B(1 + rf ) = PG − K

SPB + B(1 + rf ) = 0



Black-Scholes Option Pricing

SPG + B(1 + rf ) = PG − K

SPB + B(1 + rf ) = 0

Again this is a set of two linear equations in the two
unknowns: S and B . The solution is

S =
PG − K

PG − PB
and B = − PB(PG − K )

(1 + rf )(PG − PB)

Since the stock costs P0 and the bond costs 1, the cost of this
portfolio at t = 0 is(

PG − K

PG − PB

)
P0 −

[
PB(P

G

K
− 1)

PG − PB

](
K

1 + rf

)



Black-Scholes Option Pricing

But since the portfolio of the stock and bond again replicates
the payoffs from the option, this implies that the option’s price
must be

V0 =

(
PG − K

PG − PB

)
P0 −

[
PB(P

G

K
− 1)

PG − PB

](
K

1 + rf

)
Again, we don’t need to make any assumptions about risk or
risk aversion, or even know the probabilities of the two states
to compute the option price: all of this information is already
reflected in the stock price itself.



Black-Scholes Option Pricing

Again for future reference, note that the solution in this case
takes the form

V0 = N1P0 − N2

(
K

1 + rf

)
,

where

N1 =
PG − K

PG − PB
and N2 =

PB(P
G

K
− 1)

PG − PB



Black-Scholes Option Pricing

In this case,

N1 =
PG − K

PG − PB
and N2 =

PB(P
G

K
− 1)

PG − PB

are both between zero and one since

0 < PG − K < PG − PB

and

0 < PB

(
PG

K
− 1

)
< PG − PB



Black-Scholes Option Pricing

Finally, there is the easy case in which the call is out of the
money in both states at t = 1.

Then
CG = 0 and CB = 0

The option’s payoffs can be replicated by a portfolio consisting
of zero shares of the stock and zero bonds, which costs zero at
t = 0. Equivalently, an asset that pays off nothing should cost
nothing.



Black-Scholes Option Pricing

Even in this case, however, we might note that the solution
takes the form

V0 = N1P0 − N2

(
K

1 + rf

)
,

where
N1 = 0 and N2 = 0



Black-Scholes Option Pricing

We have now seen that in a simple, two-date/two-state
setting, the option’s price is always

V0 = N1P0 − N2

(
K

1 + rf

)
,

where N1 and N2 are between zero and one and depend on the
likelihood that the call will be in or out of the money when it
expires.



Black-Scholes Option Pricing

Black and Scholes and Merton considered a more general
setting, in which the option priced at t = 0 does not expire
until t = T .

They also allowed for (many) more than two possible states at
t = T .



Black-Scholes Option Pricing

The technical problem is that with more than two states at
t = T , more than two assets are needed to create a portfolio
with the same payoffs as the option.



Black-Scholes Option Pricing

Black and Scholes and Merton realized that this problem can
be solved by breaking the full period into sub-periods, so that
there are only two states in each sub-period.



Black-Scholes Option Pricing

With three states at t = T , only two subperiods are needed,
but with many states at t = T , many subperiods are needed.



Black-Scholes Option Pricing

A dynamic hedging strategy can then be used to track the
payoffs on the option using a portfolio consisting only of the
stock and bond . . .



Black-Scholes Option Pricing

. . . but where the number of shares and the number of bonds
must be adjusted in each subperiod so that the portfolio can
continue to track the option’s payoffs.



Black-Scholes Option Pricing

Black and Scholes and Merton used methods in stochastic
calculus developed by Kiyoshi Ito (Japan, 1915-2008) in the
1940s and early 1950s to show that even in the more general
case, the solution for the option price still takes the form

V0 = N1P0 − N2

(
K

1 + rf

)
where N1 and N2 continue to lie between zero and one.



Black-Scholes Option Pricing

In particular, the Black-Scholes formula is

V0 = N1P0 − N2

(
K

1 + rf

)
where N1 = F (d1) and N2 = F (d2),

d1 =
ln(P0/K ) + (rf + σ2/2)T

σ
√
T

and d2 = d1 − σ
√
T

σ is the standard deviation of the return on the stock, and F
is the standard normal cumulative distribution function, so
that F (X ) measures the probability that a random variable
that is normally distributed with mean zero and variance one
turns out to be less than or equal to X .



Black-Scholes Option Pricing

Hence, in practice, one can approximate contingent claims
prices by:

1. Choosing a broad portfolio stocks, say those in the
Standard & Poor’s 500, to approximate the market
portfolio.

2. Constructing a grid for the range of possible future values
for the portfolio with P i+1

s = P i
s + δ, where δ is small

enough to achieve a desired level of accuracy.

3. Using the Black-Scholes formula to infer the price of call
options on the portfolio for all strike prices on the grid.



Black-Scholes Option Pricing

Another valuable application of the Black-Scholes formula

V0 = N1P0 − N2

(
K

1 + rf

)
where N1 = F (d1) and N2 = F (d2),

d1 =
ln(P0/K ) + (rf + σ2/2)T

σ
√
T

and d2 = d1 − σ
√
T

stems from the fact that all of the “inputs” P0, K , rf , and T
are observable except for σ, the standard deviation of the
return on the stock.



Black-Scholes Option Pricing

Thus, the Black-Scholes formula can be used in two ways:

1. If the option is not traded, you can make an assumption
about the volatility of the stock price σ and calculate
what the option price V0 should be.

2. If the option is traded, you can use your observation of
the option price V0 to “back out” an estimate of what
the stock price volatility σ is likely to be.

The VIX volatility index is similar to to the volatility parameter
σ constructed from the price of an option on the S&P 500.


