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Risk Aversion and Portfolio Allocation

Let’s now put our framework of decision-making under
uncertainty to use.

Consider a risk-averse investor with vN-M expected utility who
divides his or her initial wealth Y0 into an amount a allocated
to a risky asset – say, the stock market – and an amount
Y0 − a allocated to a safe asset – say, a bank account or a
government bond.



Risk Aversion and Portfolio Allocation

Y0 = initial wealth

a = amount allocated to stocks

r̃ = random return on stocks

rf = risk-free return

Ỹ1 = terminal wealth

Ỹ1 = (1 + rf )(Y0 − a) + a(1 + r̃)

= Y0(1 + rf ) + a(r̃ − rf )



Risk Aversion and Portfolio Allocation

The investor chooses a to maximize expected utility:

max
a

E [u(Ỹ1)] = max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}

If the investor is risk-averse, u is concave and the first-order
condition for this unconstrained optimization problem, found
by differentiating the objective function by the choice variable
and equating to zero, is both a necessary and sufficient
condition for the value a∗ of a that solves the problem.



Risk Aversion and Portfolio Allocation

The investor’s problem is

max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}

The first-order condition is

E{u′[Y0(1 + rf ) + a∗(r̃ − rf )](r̃ − rf )} = 0.

Note: we are allowing the investor to sell stocks short (a∗ < 0)
or to buy stocks on margin (a∗ > Y0) if he or she desires.



Risk Aversion and Portfolio Allocation

Theorem If the Bernoulli utility function u is increasing and
concave, then

a∗ > 0 if and only if E (r̃) > rf

a∗ = 0 if and only if E (r̃) = rf

a∗ < 0 if and only if E (r̃) < rf

Thus, a risk-averse investor will always allocate at least some
funds to the stock market if the expected return on stocks
exceeds the risk-free rate.



Risk Aversion and Portfolio Allocation

To prove the theorem, let

W (a) = E{u′[Y0(1 + rf ) + a(r̃ − rf )](r̃ − rf )},

so that the investor’s first-order condition can be written more
compactly as

W (a∗) = 0.



Risk Aversion and Portfolio Allocation

Next, note that with

W (a) = E{u′[Y0(1 + rf ) + a(r̃ − rf )](r̃ − rf )},

it follows that

W ′(a) = E{u′′[Y0(1 + rf ) + a(r̃ − rf )](r̃ − rf )2} < 0

since u is concave. This means that W is a decreasing
function of a.



Risk Aversion and Portfolio Allocation

Finally, note that with

W (a) = E{u′[Y0(1 + rf ) + a(r̃ − rf )](r̃ − rf )},

W (0) = E{u′[Y0(1 + rf ) + 0(r̃ − rf )](r̃ − rf )}
= E{u′[Y0(1 + rf )](r̃ − rf )}
= u′[Y0(1 + rf )]E (r̃ − rf )

= u′[Y0(1 + rf )][E (r̃)− rf ].

Since u is increasing, this means that W (0) has the same sign
as E (r̃)− rf .



Risk Aversion and Portfolio Allocation

We now know that:

1. W (a) is a decreasing function

2. W (0) has the same sign as E (r̃)− rf .

3. W (a∗) = 0



Risk Aversion and Portfolio Allocation

E (r̃)− rf > 0 implies that W (0) > 0, and since W is
decreasing, W (a∗) = 0 implies that a∗ > 0.



Risk Aversion and Portfolio Allocation

Since W is decreasing, W (a∗) = 0 and a∗ > 0 imply that
W (0) > 0. And since W (0) has the same sign as E (r̃)− rf ,
E (r̃)− rf > 0.



Risk Aversion and Portfolio Allocation

E (r̃)− rf < 0 implies that W (0) < 0, and since W is
decreasing, W (a∗) = 0 implies that a∗ < 0.



Risk Aversion and Portfolio Allocation

Since W is decreasing, W (a∗) = 0 and a∗ < 0 imply that
W (0) < 0. And since W (0) has the same sign as E (r̃)− rf ,
E (r̃)− rf < 0.



Risk Aversion and Portfolio Allocation

E (r̃)− rf = 0 implies that W (0) = 0, and since W is
decreasing, W (a∗) = 0 implies that a∗ = 0.



Risk Aversion and Portfolio Allocation

Since W is decreasing, W (a∗) = 0 and a∗ = 0 imply that
W (0) = 0. And since W (0) has the same sign as E (r̃)− rf ,
E (r̃)− rf = 0.



Risk Aversion and Portfolio Allocation

Theorem If the Bernoulli utility function u is increasing and
concave, then

a∗ > 0 if and only if E (r̃) > rf

a∗ = 0 if and only if E (r̃) = rf

a∗ < 0 if and only if E (r̃) < rf

Thus, a risk-averse investor will always allocate at least some
funds to the stock market if the expected return on stocks
exceeds the risk-free rate.



Risk Aversion and Portfolio Allocation

Danthine and Donaldson (3rd ed., p.41) report that in the
United States, 1889-2010, average real (inflation-adjusted)
returns on stocks and risk-free bonds are

E (r̃) = 0.075 (7.5 percent per year)

rf = 0.011 (1.1 percent per year)

The equity risk premium of E (r̃)− rf = 0.064 (6.4 percent) is
not only positive, it is huge. The implication of the theory is
that all investors, even the most risk averse, should have some
money invested in the stock market.



Risk Aversion and Portfolio Allocation

As an example, suppose u(Y ) = ln(Y ), as suggested by Daniel
Bernoulli. Recall that for this utility function, u′(Y ) = 1/Y .
Then assume that stock returns can either be good or bad:

r̃ =

{
rG with probability π
rB with probability 1− π

where rG > rf > rB defines the “good” and “bad” states and

πrG + (1− π)rB > rf ,

so that E (r̃) > rf and the investor will choose a∗ > 0.



Risk Aversion and Portfolio Allocation

The problem

max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}

specializes to

max
a

π ln[Y0(1 + rf ) + a(rG − rf )]

+ (1− π) ln[Y0(1 + rf ) + a(rB − rf )]



Risk Aversion and Portfolio Allocation

The problem

max
a

π ln[Y0(1 + rf ) + a(rG − rf )]

+ (1− π) ln[Y0(1 + rf ) + a(rB − rf )]

has first-order condition

π(rG − rf )

Y0(1 + rf ) + a∗(rG − rf )
+

(1− π)(rB − rf )

Y0(1 + rf ) + a∗(rB − rf )
= 0.



Risk Aversion and Portfolio Allocation

π(rG − rf )

Y0(1 + rf ) + a∗(rG − rf )
+

(1− π)(rB − rf )

Y0(1 + rf ) + a∗(rB − rf )
= 0

π(rG − rf )[Y0(1 + rf ) + a∗(rB − rf )]

= −(1− π)(rB − rf )[Y0(1 + rf ) + a∗(rG − rf )]

a∗(rG − rf )(rB − rf )

= −Y0(1 + rf )[π(rG − rf ) + (1− π)(rB − rf )]



Risk Aversion and Portfolio Allocation

a∗(rG − rf )(rB − rf )

= −Y0(1 + rf )[π(rG − rf ) + (1− π)(rB − rf )]

implies

a∗

Y0
= −(1 + rf )[π(rG − rf ) + (1− π)(rB − rf )]

(rG − rf )(rB − rf )
,

which is positive, since rG > rf > rB and

E (r̃)− rf = π(rG − rf ) + (1− π)(rB − rf ) > 0.



Risk Aversion and Portfolio Allocation

a∗

Y0
= −(1 + rf )[π(rG − rf ) + (1− π)(rB − rf )]

(rG − rf )(rB − rf )
,

In this case, a∗:

Rises proportionally with Y0.

Increases as E (r̃)− rf rises.

Falls as rG and rB move father away from rf ,
holding E (r̃) constant; that is, in response to a
mean preserving spread.



Risk Aversion and Portfolio Allocation

a∗

Y0
= −(1 + rf )[π(rG − rf ) + (1− π)(rB − rf )]

(rG − rf )(rB − rf )
,

rf rG rB π E (r̃) a∗/Y0

0.05 0.40 −0.20 0.50 0.10 0.60
0.05 0.30 −0.10 0.50 0.10 1.40
0.05 0.40 −0.20 0.75 0.25 2.40

The fraction of initial wealth allocated to stocks rises when
stocks become less risky or pay higher expected returns.



Risk Aversion and Portfolio Allocation

Before moving on, return to the general problem

max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}

but assume now that the investor is risk-neutral, with

u(Y ) = αY + β,

and α > 0, so that more wealth is preferred to less.



Risk Aversion and Portfolio Allocation

The risk-neutral investor solves

max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}

= max
a

E{α[Y0(1 + rf ) + a(r̃ − rf )] + β}

= max
a
α{Y0(1 + rf ) + a[E (r̃)− rf ]}+ β

So long as E (r̃)− rf > 0, the risk-neutral investor will choose
a∗ to be as large as possible, borrowing as much as he or she
is allowed to in order to buy more stocks on margin.



Portfolios, Risk Aversion, and Wealth

The previous examples call out for a more detailed analysis of
how optimal portfolio allocation decisions, summarized by the
value of a∗ that solves

max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}

are influenced by the investor’s degree of risk aversion and his
or her level of wealth.



Portfolios, Risk Aversion, and Wealth

The following result was proven by Kenneth Arrow in “The
Theory of Risk Aversion,” published in the 1971 volume Essays
in the Theory of Risk-Bearing and reprinted in 1983 in volume
3 of the Collected Papers of Kenneth J. Arrow (Harvard
University Press).

Theorem Consider two investors, i = 1 and i = 2, and suppose
that for all wealth levels Y , R1

A(Y ) > R2
A(Y ), where R i

A(Y ) is
investor i ’s coefficient of absolute risk aversion. Then
a∗1(Y ) < a∗2(Y ), where a∗i (Y ) is amount allocated by investor i
to stocks when he or she has initial wealth Y .



Portfolios, Risk Aversion, and Wealth

Recall that the coefficients of absolute and relative risk
aversion are

RA(Y ) = −u′′(Y )

u′(Y )
and RR(Y ) = −Yu′′(Y )

u′(Y )
.

Thus

R1
A(Y ) > R2

A(Y ) or − u′′1 (Y )

u′1(Y )
> −u′′2 (Y )

u′2(Y )

implies

−Yu′′1 (Y )

u′1(Y )
> −Yu′′2 (Y )

u′2(Y )
or R1

R(Y ) > R2
R(Y ).



Portfolios, Risk Aversion, and Wealth

Arrow’s result applies equally well to relative risk aversion:

Theorem Consider two investors, i = 1 and i = 2, and suppose
that for all wealth levels Y , R1

R(Y ) > R2
R(Y ), where R i

R(Y ) is
investor i ’s coefficient of relative risk aversion. Then
a∗1(Y ) < a∗2(Y ), where a∗i (Y ) is amount allocated by investor i
to stocks when he or she has initial wealth Y .



Portfolios, Risk Aversion, and Wealth

Let’s test Arrow’s proposition out, by generalizing our previous
example with logarithmic utility to the case where

u(Y ) =
Y 1−γ − 1

1− γ
,

with γ > 0. For this Bernoulli utility function, the coefficient
of relative risk aversion is constant and equal to γ. The
specific setting γ = 1 takes us back to the case with
logarithmic utility.



Portfolios, Risk Aversion, and Wealth

Hence, in this extended example,

u(Y ) =
Y 1−γ − 1

1− γ
implies u′(Y ) = Y −γ =

1

Y γ
.

and stock returns can either be good or bad

r̃ =

{
rG with probability π
rB with probability 1− π

where rG > rf > rB defines the “good” and “bad” states and

πrG + (1− π)rB > rf ,

so that E (r̃) > rf and the investor will choose a∗ > 0.



Portfolios, Risk Aversion, and Wealth

With CRRA (constant relative risk aversion) utility and two
states for r̃ , the problem

max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}

specializes to

max
a

π

{
[Y0(1 + rf ) + a(rG − rf )]1−γ − 1

1− γ

}
+ (1− π)

{
[Y0(1 + rf ) + a(rB − rf )]1−γ − 1

1− γ

}



Portfolios, Risk Aversion, and Wealth

The problem

max
a

π

{
[Y0(1 + rf ) + a(rG − rf )]1−γ − 1

1− γ

}
+ (1− π)

{
[Y0(1 + rf ) + a(rB − rf )]1−γ − 1

1− γ

}
has first-order condition

π(rG − rf )

[Y0(1 + rf ) + a∗(rG − rf )]γ
+

(1− π)(rB − rf )

[Y0(1 + rf ) + a∗(rB − rf )]γ
= 0.



Portfolios, Risk Aversion, and Wealth

π(rG − rf )

[Y0(1 + rf ) + a∗(rG − rf )]γ
+

(1− π)(rB − rf )

[Y0(1 + rf ) + a∗(rB − rf )]γ
= 0

π(rG − rf )[Y0(1 + rf ) + a∗(rB − rf )]γ

= (1− π)(rf − rB)[Y0(1 + rf ) + a∗(rG − rf )]γ

[π(rG − rf )]1/γ[Y0(1 + rf ) + a∗(rB − rf )]

= [(1− π)(rf − rB)]1/γ[Y0(1 + rf ) + a∗(rG − rf )]



Portfolios, Risk Aversion, and Wealth

[π(rG − rf )]1/γ[Y0(1 + rf ) + a∗(rB − rf )]

= [(1− π)(rf − rB)]1/γ[Y0(1 + rf ) + a∗(rG − rf )]

Y0(1 + rf )[π(rG − rf )]1/γ + a∗(rB − rf )[π(rG − rf )]1/γ

= Y0(1 + rf )[(1− π)(rf − rB)]1/γ

+a∗(rG − rf )[(1− π)(rf − rB)]1/γ

Y0(1 + rf ){[π(rG − rf )]1/γ − [(1− π)(rf − rB)]1/γ]}
= a∗{(rG − rf )[(1− π)(rf − rB)]1/γ + (rf − rB)[π(rG − rf )]1/γ}



Portfolios, Risk Aversion, and Wealth

Y0(1 + rf ){[π(rG − rf )]1/γ − [(1− π)(rf − rB)]1/γ]}
= a∗{(rG − rf )[(1− π)(rf − rB)]1/γ + (rf − rB)[π(rG − rf )]1/γ}

implies

a∗

Y0
=

(1 + rf ){[π(rG − rf )]1/γ − [(1− π)(rf − rB)]1/γ]}
(rG − rf )[(1− π)(rf − rB)]1/γ + (rf − rB)[π(rG − rf )]1/γ



Portfolios, Risk Aversion, and Wealth

a∗

Y0
=

(1 + rf ){[π(rG − rf )]1/γ − [(1− π)(rf − rB)]1/γ]}
(rG − rf )[(1− π)(rf − rB)]1/γ + (rf − rB)[π(rG − rf )]1/γ

γ rf rG rB π E (r̃) a∗/Y0

0.5 0.05 0.40 −0.20 0.50 0.10 1.20
1 0.05 0.40 −0.20 0.50 0.10 0.60
2 0.05 0.40 −0.20 0.50 0.10 0.30
3 0.05 0.40 −0.20 0.50 0.10 0.20
5 0.05 0.40 −0.20 0.50 0.10 0.12

10 0.05 0.40 −0.20 0.50 0.10 0.06



Portfolios, Risk Aversion, and Wealth

γ rf rG rB π E (r̃) a∗/Y0

0.5 0.05 0.40 −0.20 0.50 0.10 1.20
1 0.05 0.40 −0.20 0.50 0.10 0.60
2 0.05 0.40 −0.20 0.50 0.10 0.30
3 0.05 0.40 −0.20 0.50 0.10 0.20
5 0.05 0.40 −0.20 0.50 0.10 0.12

10 0.05 0.40 −0.20 0.50 0.10 0.06

Consistent with Arrow’s theorem, higher coefficients of relative
risk aversion are associated with smaller values of a∗.



Portfolios, Risk Aversion, and Wealth

a∗

Y0
=

(1 + rf ){[π(rG − rf )]1/γ − [(1− π)(rf − rB)]1/γ]}
(rG − rf )[(1− π)(rf − rB)]1/γ + (rf − rB)[π(rG − rf )]1/γ

Note that with constant relative risk aversion, a∗ rises
proportionally with wealth.

Two additional theorems, also proven by Arrow, tell us more
about the relationship between a∗ and wealth.



Portfolios, Risk Aversion, and Wealth

Theorem Let a∗(Y0) be the solution to

max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}.

If u(Y ) is such that

(a) R ′A(Y ) < 0 then da∗(Y0)
dY0

> 0

(b) R ′A(Y ) = 0 then da∗(Y0)
dY0

= 0

(c) R ′A(Y ) > 0 then da∗(Y0)
dY0

< 0



Portfolios, Risk Aversion, and Wealth

Part (a)

R ′A(Y ) < 0 then
da∗(Y0)

dY0
> 0

describes the “normal” case where absolute risk aversion falls
as wealth rises.

In this case, wealthier individuals allocate more wealth to
stocks.



Portfolios, Risk Aversion, and Wealth

Part (b)

R ′A(Y ) = 0 then
da∗(Y0)

dY0
= 0

means that investors with constant absolute risk aversion

u(Y ) = −1

ν
e−νY

allocate a constant amount of wealth to stocks.

This may seem surprising, but it reflects that fact that absolute
risk aversion describes preferences over bets of a given size . . .



Portfolios, Risk Aversion, and Wealth

Part (b)

R ′A(Y ) = 0 then
da∗(Y0)

dY0
= 0

means that investors with constant absolute risk aversion

u(Y ) = −1

ν
e−νY

allocate a constant amount of wealth to stocks.

. . . so a CARA investor finds a bet of the ideal size and sticks
with it, even when income increases.



Portfolios, Risk Aversion, and Wealth

Part (c)

R ′A(Y ) > 0 then
da∗(Y0)

dY0
< 0

describes the case where absolute risk aversion rises as wealth
rises.

The implication that wealthier individuals allocate less wealth
to stocks makes this case seem less plausible.



Portfolios, Risk Aversion, and Wealth

Theorem Let a∗(Y0) be the solution to

max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}.

If u(Y ) is such that

(a) R ′A(Y ) < 0 then da∗(Y0)
dY0

> 0

(b) R ′A(Y ) = 0 then da∗(Y0)
dY0

= 0

(c) R ′A(Y ) > 0 then da∗(Y0)
dY0

< 0

This result relates changes in absolute risk aversion to the
absolute amount of wealth allocated to stocks.



Portfolios, Risk Aversion, and Wealth

Consistent with our results with CRRA utility, the next result
relates changes in relative risk aversion to changes in the
proportion of wealth allocated to stocks.

Define the elasticity of the function a∗(Y0) as

η =
d ln a∗(Y0)

d lnY0
=

Y0

a∗(Y0)

da∗(Y0)

dY0

The elasticity measures the percentage change in a∗ brought
about by a percentage-point change in Y0.



Portfolios, Risk Aversion, and Wealth

Theorem Let a∗(Y0) be the solution to

max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}.

If u(Y ) is such that

(a) R ′R(Y ) < 0 then η > 1

(b) R ′R(Y ) = 0 then η = 1

(c) R ′R(Y ) > 0 then η < 1

The theorem confirms what we know about CRRA utility: it
implies that a∗ rises proportionally with Y0.



Portfolios, Risk Aversion, and Wealth

With CRRA utility:
a∗

Y0
= K

where

K =
(1 + rf ){[π(rG − rf )]1/γ − [(1− π)(rf − rB)]1/γ]}

(rG − rf )[(1− π)(rf − rB)]1/γ + (rf − rB)[π(rG − rf )]1/γ
.

Hence
ln(a∗(Y0)) = ln(K ) + ln(Y0)

and

η =
d ln a∗(Y0)

d lnY0
= 1.



Portfolios, Risk Aversion, and Wealth

Theorem Let a∗(Y0) be the solution to

max
a

E{u[Y0(1 + rf ) + a(r̃ − rf )]}.

If u(Y ) is such that

(a) R ′R(Y ) < 0 then η > 1

(b) R ′R(Y ) = 0 then η = 1

(c) R ′R(Y ) > 0 then η < 1

But the theorem extends the results to the cases of decreasing
and increasing relative risk aversion.



Risk Aversion and Saving Behavior

So far, we’ve assumed that investors only receive utility from
the terminal value of their wealth, and asked how they should
split their initial wealth – accumulated, presumably, through
past saving – across risky and riskless assets in order to
maximized the expected utility from terminal wealth.

Now, let’s take the possibly random return on the investor’s
portfolio of assets as given, and ask how he or she should
optimally determine savings under conditions of uncertainty.



Risk Aversion and Saving Behavior

Suppose there are two periods, t = 0 and t = 1, and let

Y0 = initial wealth

s = amount saved in period t = 0

c0 = Y0 − s = amount consumed in period t = 0

R̃ = 1 + r̃ = random, gross return on savings

c̃1 = sR̃ = amount consumed in period t = 1

Suppose also that the investor has vN-M expected utility over
consumption during periods t = 0 and t = 1 given by

u(c0) + βE [u(c̃1)] = u(Y0 − s) + βE [u(sR̃)],

where the discount factor β is a measure of patience.



Risk Aversion and Saving Behavior

The solution to the investor’s saving problem

max
s

u(Y0 − s) + βE [u(sR̃)]

is described by the first-order condition

−u′(Y0 − s∗) + βE [u′(s∗R̃)R̃] = 0

or
u′(Y0 − s∗) = βE [u′(s∗R̃)R̃]



Risk Aversion and Saving Behavior

u′(Y0 − s∗) = βE [u′(s∗R̃)R̃]

We can use this optimality condition to investigate how
optimal saving s∗ responds to an increase in risk, in the form of
a mean preserving spread in the distribution of R̃ . Intuitively,
one might expect there to be two offsetting effects:

1. The riskier return will make saving less attractive and
thereby reduce s∗.

2. The riskier return might lead to “precautionary saving” in
order to cushion period t = 1 consumption against the
possibility of a bad output and thereby increase s∗.



Risk Aversion and Saving Behavior

u′(Y0 − s∗) = βE [u′(s∗R̃)R̃]

To see which of these two effects dominates, define

g(R̃) = u′(s∗R̃)R̃

so that the right-hand side becomes

βE [g(R̃)].

Jensen’s inequality will imply that after a mean preserving
spread the distribution of R̃ in this expectation will fall if g is
concave and rise if g is convex.



Risk Aversion and Saving Behavior

When g is concave, a mean preserving spread in the
distribution of R̃ will decrease E [g(R̃)].



Risk Aversion and Saving Behavior

When g is convex, a mean preserving spread in the distribution
of R̃ will increase E [g(R̃)].



Risk Aversion and Saving Behavior

The definition
g(R̃) = u′(s∗R̃)R̃

suggests that the concavity or convexity of g will depend on
the sign of the third derivative of u.

The product and chain rules for differentiation imply

g ′(R̃) = u′′(s∗R̃)s∗R̃ + u′(s∗R̃)

g ′′(R̃) = u′′′(s∗R̃)(s∗)2R̃ + u′′(s∗R̃)s + u′′(s∗R̃)s



Risk Aversion and Saving Behavior

g ′′(R̃) = u′′′(s∗R̃)(s∗)2R̃ + u′′(s∗R̃)s + u′′(s∗R̃)s

= u′′′(s∗R̃)(s∗)2R̃ + 2u′′(s∗R̃)s

implies that g ′′(R̃) has the same sign as

u′′′(s∗R̃)sR̃ + 2u′′(s∗R̃)



Risk Aversion and Saving Behavior

To understand precautionary saving behavior, the concept of
prudence is defined by Miles Kimball, “Precautionary Saving in
the Small and in the Large,” Econometrica Vol.58 (January
1990): pp.53-73.

Whereas risk aversion is summarized by the second derivative
of the Bernoulli utility function u, prudence is summarized by
the third derivative of u.



Risk Aversion and Saving Behavior

Kimball defines the coefficient of absolute prudence as

PA(Y ) = −u′′′(Y )

u′′(Y )

and the coefficient of relvative prudence as

PR(Y ) = −Yu′′′(Y )

u′′(Y )

thereby extending the analogous measures of absolute and
relative risk aversion.



Risk Aversion and Saving Behavior

Since g ′′(R̃) has the same sign as

u′′′(s∗R̃)sR̃ + 2u′′(s∗R̃)

or

u′′′(Y )Y+2u′′(Y ) = u′′(Y )

[
u′′′(Y )Y

u′′(Y )
+ 2

]
= u′′(Y )[2−PR(Y )]

g ′′(R̃) is positive if 2 < PR(Y )

g ′′(R̃) is negative if 2 > PR(Y )



Risk Aversion and Saving Behavior

Hence, if 2 < PR(Y ), then g ′′(R̃) > 0. Since g is convex, a
mean preserving spread in the distribution of R̃ increases the
right hand side of the optimality condition

u′(Y0 − s∗) = βE [u′(s∗R̃)R̃]

and s∗ must increase to maintain the equality. The
precautionary saving effect dominates if the coefficient of
relative prudence exceeds 2.



Risk Aversion and Saving Behavior

Conversely, if 2 > PR(Y ), then g ′′(R̃) < 0. Since g is
concave, a mean preserving spread in the distribution of R̃
decreases the right hand side of the optimality condition

u′(Y0 − s∗) = βE [u′(s∗R̃)R̃]

and s∗ must decrease to maintain the equality. The negative
effect of risk on saving dominates if the coefficient of relative
prudence is less than 2.



Risk Aversion and Saving Behavior

To apply these results, let’s calculate the coefficient of relative
prudence implied by the CRRA utility function

u(Y ) =
Y 1−γ − 1

1− γ
,

with γ > 0. Since u′(Y ) = Y −γ,

u′′(Y ) = −γY −γ−1 and u′′′(Y ) = γ(γ + 1)Y −γ−2

imply

PR(Y ) = −Yu′′′(Y )

u′′(Y )
=

Y γ(γ + 1)Y −γ−2

γY −γ−1
= γ + 1.



Risk Aversion and Saving Behavior

Hence, the CRRA utility function

u(Y ) =
Y 1−γ − 1

1− γ

implies both a constant coefficient of relative risk aversion
equal to γ and a constant coefficient of relative prudence
equal to γ + 1.

If γ > 1, saving rises in response to a mean preserving spread
in the distribution of R̃ . When γ < 1, saving falls. In the
special case γ = 1 of logarithmic utility, saving is unaffected.



Separating Risk and Time Preferences

Our first set of results focused on the optimal choice of a, the
amount of wealth to allocate to a risky asset.

Our second set of results focused on the optimal choice of s,
the amount of saving to carry from period t = 0 to period
t = 1.

Now let’s combine the two problems to consider the
simultaneous choices of a and s.



Separating Risk and Time Preferences

Suppose again that there are two periods, t = 0 and t = 1,
and let

Y0 = initial wealth

s = amount saved in period t = 0

c0 = Y0 − s = amount consumed in period t = 0

a = amount allocated to stocks in period t = 0

s − a = amount allocated to the riskless asset in
period t = 0

r̃ = random return on stocks

rf = return on riskless asset

c1 = amount consumed in period t = 1



Separating Risk and Time Preferences

Y0 = initial wealth

s = amount saved in period t = 0

c0 = Y0 − s = amount consumed in period t = 0

a = amount allocated to stocks in period t = 0

s − a = amount allocated to the riskless asset in
period t = 0

r̃ = random return on stocks

rf = return on riskless asset

c1 = amount consumed in period t = 1

Then

c1 = (1 + rf )(s − a) + a(1 + r̃) = (1 + rf )s + a(r̃ − r).



Separating Risk and Time Preferences

If the investor again has vN-M expected utility

u(c0) + βE [u(c1)] = u(Y0 − s) + βE{u[s(1 + rf ) + a(r̃ − r)]}

his or her problem can be stated as

max
s,a

u(Y0 − s) + βE{u[s(1 + rf ) + a(r̃ − r)]}



Separating Risk and Time Preferences

max
s,a

u(Y0 − s) + βE{u[s(1 + rf ) + a(r̃ − r)]}

The first-order condition for s is

u′(Y0 − s∗) = β(1 + rf )E{u′[s∗(1 + rf ) + a∗(r̃ − r)]}

and the first-order condition for a is

βE{u′[s∗(1 + rf ) + a∗(r̃ − r)](r̃ − rf )} = 0



Separating Risk and Time Preferences

The first-order conditions

u′(Y0 − s∗) = β(1 + rf )E{u′[s∗(1 + rf ) + a∗(r̃ − r)]}

βE{u′[s∗(1 + rf ) + a∗(r̃ − r)](r̃ − rf )} = 0

form a system of two equations in the two unknowns a∗ and
s∗, which can be solved numerically using a computer.

The model can be enriched further by considering additional
periods t = 0, 1, 2, . . . ,T and introducing labor income.



Separating Risk and Time Preferences

Note, however, that the first-order condition for a

βE{u′[s∗(1 + rf ) + a∗(r̃ − r)](r̃ − rf )} = 0

takes the same form as in the simpler problem without saving:

E{u′[Y0(1 + rf ) + a∗(r̃ − rf )](r̃ − rf )} = 0.

Hence, some of our previous results carry over to the more
general case. With CRRA utility, for example, a∗ will change
proportionally with s∗, to maintain an optimal fraction of
saving allocated to the risky asset.



Separating Risk and Time Preferences

As a final exercise, let’s return to the optimal saving problem

max
s

u(Y0 − s) + βE [u(sR̃)],

but simplify by eliminating randomness from the return R̃ and
by assuming from the start that the utility function takes the
CRRA form:

max
s

(Y0 − s)1−γ − 1

1− γ
+ β

[
(sR)1−γ − 1

1− γ

]
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max
s

(Y0 − s)1−γ − 1

1− γ
+ β

[
(sR)1−γ − 1

1− γ

]
The first-order condition for the optimal choice of s is

(Y0 − s)−γ = β(sR)−γR

or, recalling that c0 = Y0 − s and c1 = sR ,

c−γ0 = βRc−γ1
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c−γ0 = βRc−γ1

(c1/c0)γ = βR

c1/c0 = (βR)1/γ

ln(c1/c0) = (1/γ) ln(β) + (1/γ) ln(R)

This last expression reveals that with this preference
specification, γ measures the constant coefficient of relative
risk aversion, but

1

γ
=

d ln(c1/c0)

d ln(R)

measures the constant elasticity of intertemporal substitution.



Separating Risk and Time Preferences

Although the link between aversion to risk (γ) and willingness
to substitute consumption intertemporally (1/γ) is particularly
clear in the CRRA case, it holds more generally, since both
features of preferences are reflected in the concavity of the
Bernoulli utility function in the vN-M expected utility
framework.



Separating Risk and Time Preferences

In response to evidence that this link between risk aversion
and intertemporal substitution is too restrictive to describe
optimal saving and investment behavior, a more general
preference specification is proposed by Larry Epstein and
Stanley Zin, “Substitution, Risk Aversion, and the Temporal
Behavior of Consumption and Asset Returns: A Theoretical
Framework,” Econometrica Vol.57 (July 1989): 00.937-969.



Separating Risk and Time Preferences

Although Epstein and Zin work in a multi-period framework, a
simple two-period version of their proposed utility function
over consumption c0 at t = 0 and consumption c̃1, possibly
dependent on random asset returns, at t = 1, is

U(c0, c̃1) =

{
(1− β)c

σ−1
σ

0 + β
[(
E (c̃1−α1 )

) 1
1−α

]σ−1
σ

} σ
σ−1
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U(c0, c̃1) =

{
(1− β)c

σ−1
σ

0 + β
[(
E (c̃1−α1 )

) 1
1−α

]σ−1
σ

} σ
σ−1

Note, first, that if there is no uncertainty, so that c̃1 = c1 and
E (c̃1)1−α = c1−α1 , then this utility function implies

U(c0, c1) =

{
(1− β)c

σ−1
σ

0 + β
[

(c1−α1 )
1

1−α

]σ−1
σ

} σ
σ−1

=
{

(1− β)c
σ−1
σ

0 + βc
σ−1
σ

1

} σ
σ−1
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Without uncertainty,

U(c0, c1) =
{

(1− β)c
σ−1
σ

0 + βc
σ−1
σ

1

} σ
σ−1

Define

V (c0, c1) = [U(c0, c1)]
σ−1
σ = (1− β)c

σ−1
σ

0 + βc
σ−1
σ

1

and note that
σ − 1

σ
= 1− 1

σ

to see that under certainty, the Epstein-Zin utility function
implies an elasticity of intertemporal substitution equal to σ.
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U(c0, c̃1) =

{
(1− β)c

σ−1
σ

0 + β
[(
E (c̃1−α1 )

) 1
1−α

]σ−1
σ

} σ
σ−1

On the other hand, under uncertainty, once period t = 1
arrives, the investor cares about

E (c̃1−α1 )

so α is like the coefficient of relative risk aversion. Hence, the
Epstein-Zin utility function allows the coefficient of relative
risk aversion α to differ from the inverse of the elasticity of
intertemporal substitution σ.
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Note that under uncertainty, when α = 1/σ,

1− α =
σ − 1

σ

and

U(c0, c̃1) =

{
(1− β)c

σ−1
σ

0 + β
[(
E (c̃1−α1 )

) 1
1−α

]σ−1
σ

} σ
σ−1

=
{

(1− β)c
σ−1
σ

0 + βE (c̃
σ−1
σ

1 )
} σ

σ−1

=
{

(1− β)c1−α0 + βE (c̃1−α1 )
} 1

1−α
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Under uncertainty, when α = 1/σ,

U(c0, c̃1) =
{

(1− β)c1−α0 + βE (c̃1−α1 )
} 1

1−α

Define

V (c0, c̃1) = [U(c0, c̃1)]1−α = (1− β)c1−α0 + βE (c̃1−α1 )

to see that in this case, the Epstein-Zin specification collapses
to the standard CRRA case, where α measures the coefficient
of relative risk aversion and 1/α measures the elasticity of
intertemporal substitution.
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Finally, note that in the general Epstein-Zin formulation

U(c0, c̃1) =

{
(1− β)c

σ−1
σ

0 + β
[(
E (c̃1−α1 )

) 1
1−α

]σ−1
σ

} σ
σ−1

The expectation E (c̃1−α1 ) gets raised to the power(
1

1− α

)(
σ − 1

σ

)
Unless α = 1/σ, so that this product equals one, the
probabilities of different states at t = 1 will enter this utility
function nonlinearly: the Epstein-Zin nonexpected utility
function is a special case of those considered earlier by Kreps
and Porteus.



Separating Risk and Time Preferences

Hence, Epstein and Zin show that the coefficient of relative
risk aversion and the elasticity of intertemporal substitution
can be disentangled, but only at the cost of departing from
the vN-M expected utility framework.

Alternatively, we can think of Epstein and Zin’s study as giving
us another reason to be interested in nonexpected utility:
besides describing preferences over early versus late resolution
of uncertainty, it also allows risk and time preferences to be
separated.


